

ionCube PHP Encoder 14

User Guide

ioncube.com

ionCube and the ionCube logo are registered trademarks of ionCube Ltd.

 CONTACTS AND LINKS

 CONTACTS AND LINKS

Contacting ionCube

Please see our contact details at https://www.ioncube.com/contact.php

FAQ

Find answers to common questions in our FAQ at https://www.ioncube.com/faq.php

Support

For online support please visit https://support.ioncube.com

Purchasing Products

To purchase ionCube products please visit https://www.ioncube.com/purchase.php

Latest Loaders

To obtain the latest Loaders or the Loader Wizard please visit https://loaders.ioncube.com

February 2025 ionCube Encoder 14 User Guide 2

https://loaders.ioncube.com/
https://www.ioncube.com/purchase.php
https://support.ioncube.com/
https://www.ioncube.com/faq.php
https://www.ioncube.com/contact.php

CONTENTS

CONTENTS

1 INTRODUCTION...8

1.1 Encoder Outline... 9

1.2 Using Encoded Files / the ionCube Loader...10

1.3 User Guide Notation..11
1.3.1 Command Examples..11
1.3.2 Hints and Tips...11

1.4 The Supplied Software..12
1.4.1 Software Versions..12
1.4.2 Running the Software...12
1.4.3 Using on 64-bit Systems..12
1.4.4 References to Unix...13
1.4.5 Encoder PHP Language Coverage..13

2 GETTING STARTED...15

2.1 PHP Compatibility of Encoded Files..15

2.2 Running the Encoder..15

2.3 Licensing the Encoder using Command Line...17
2.3.1 Automatic Licensing [--activate] (recommended)...17
2.3.2 Manual Licensing [--gen-license-request]...17

2.4 Licensing the Encoder using the GUI..18
2.4.1 With an Active Internet Connection (recommended)..18
2.4.2 Via Email..18

2.5 Transferring a License or Reinstalling a Machine..18
2.5.1 Deactivating a License on Windows...18
2.5.2 Automatic Method [--deactivate] (recommended)...18
2.5.3 Manual Method [--gen-revoke-request] ...18

2.6 Command Line Basics..19
2.6.1 Command Line Format...19
2.6.2 Passing Command Line Options..19
2.6.3 Filename, Directory and Wildcard Pattern Matching..20
2.6.4 Using Wildcard Characters on Unix..21
2.6.5 Source directory substitution using @..22

2.7 Quick-Start Encoding Examples..23
2.7.1 Encoding Single Files...23
2.7.2 Encoding Directories..23
2.7.3 Encoding Files with non-default File Extensions..24
2.7.4 Encoding PHP Shell Scripts...24
2.7.5 Encrypting Templates and other Files..24
2.7.6 Leaving Files non-encoded..24
2.7.7 Omitting Files from the Encoding Target..25
2.7.8 Adding Copyright and License Details to Encoded Files..25

February 2025 ionCube Encoder 14 User Guide 3

CONTENTS

3 ENCODER COMMAND LINE OPTIONS..26

3.1 Specifying the Source and Target..26
3.1.1 Source Items..26
3.1.2 The Encoder Target [-o, --into]...26

3.2 Encoded File Format...27
3.2.1 ASCII Format [--ascii]...27
3.2.2 Binary Format [--binary]..27

3.3 Encoding to an Existing Directory Target...28
3.3.1 Replacing the Target [--replace-target]...28
3.3.2 Merging into the Target [--merge-target]...28
3.3.3 Renaming the Target [--rename-target]..28
3.3.4 Updating the Target [--update-target]...28
3.3.5 Create Target Path [--create-target]..28
3.3.6 Target Options and Bundled Encodings...28

3.4 Selecting Files to be Encoded, Encrypted, Copied or Ignored..29
3.4.1 Encoding Specific PHP Files [--encode]...29
3.4.2 Encrypting Files [--encrypt]...29
3.4.3 Copy Files without Encoding or Encrypting [--copy]...30
3.4.4 Skipping Items in a Project [--skip]...30
3.4.5 Excluding Files from the Target [--ignore]...30
3.4.6 Including Ignored Files [--keep]..30
3.4.7 Including only Encoded Files into the Target [--only-include-encoded-files]...............31

3.5 Bytecode Obfuscation..32
3.5.1 Obfuscating Compiled Bytecode Symbols [--obfuscate]...32
3.5.2 Specifying an Obfuscation Key [--obfuscation-key]..32
3.5.3 Specifying Obfuscation Exclusions [--obfuscation-exclusion-file]...............................33

3.6 File Based Server Restrictions (Pro and Cerberus Editions)..34
3.6.1 Expiring Files after a Period [--expire-in]..34
3.6.2 Expiring Files from a Date [--expire-on]..34
3.6.3 Locking Files to Specific Domains and Servers [--allowed-server].............................34
3.6.4 Using domain restricted scripts with PHP CLI [--trust-unnamed-servers]...................36
3.6.5 Exclude checking of interface aliases [--ignore-interface-aliases]..............................36

3.7 License Based Server Restrictions (Pro and Cerberus Editions).......................................37
3.7.1 Specifying a License File [--with-license]..37
3.7.2 Specifying a Passphrase [--passphrase]..37
3.7.3 License Check Mode [--license-check]...38

3.8 Target File Attributes...39
3.8.1 Copying with Hard Links [--use-hard-links]...39
3.8.2 Using Default File Permissions [--without-keeping-file-perms]...................................39
3.8.3 Updating File Times [--without-keeping-file-times]..39
3.8.4 File Ownership [--without-keeping-file-owner]..39
3.8.5 Setting File Ownership [--apply-file-user, --apply-file-group].......................................39

February 2025 ionCube Encoder 14 User Guide 4

CONTENTS

3.9 Language Options...40
3.9.1 Ignoring Short Open Tags [--no-short-open-tags]...40
3.9.2 Ignoring Strict Language Warnings [--ignore-strict-warnings].....................................40
3.9.3 Ignoring Deprecated Feature Warnings [--ignore-deprecated-warnings]....................40
3.9.4 Register Custom Auto Globals [--register-autoglobal]..40

3.10 Encoded File Header Customisation...41
3.10.1 Generating Files with no PHP Header [--without-loader-check].................................41
3.10.2 Customising the ‘no Loader installed’ Message [--message-if-no-loader]..................41
3.10.3 Customising the ‘no Loader installed’ Action [--action-if-no-loader]............................41
3.10.4 Setting the Run-Time Loader Path [--loader-path]..41
3.10.5 Setting the Header Code [--preamble-file]..42
3.10.6 Header Comments [--add-comment, --add-comments]..42

3.11 Customising Loader Behaviour...43
3.11.1 Loader Event Messages [--loader-event]...43
3.11.2 Callback Files [--callback-file]...44
3.11.3 Loader Event Constants...45

3.12 File Properties and Include Attack Prevention...46
3.12.1 Setting Properties [--property, --properties]..46
3.12.2 Include Attack Prevention [--include-if-property]...47
3.12.3 Preventing Prepend and Append File Usage [--disable-auto-prepend-append].........47

3.13 Project Handling..48
3.13.1 Specifying the Project File [--project-file]..48
3.13.2 Creating the Project File [--create-project]..48
3.13.3 Update a Project File [--update-project]..48

3.14 Bundled Encodings...49
3.14.1 Starting a Bundled Encoding [--bundle, -B] ...49
3.14.2 Adding to a Bundled Encoding [--add-to-bundle, -A]..49
3.14.3 Bundled encoding and the --*-target options..49
3.14.4 Adding header comments with extra encodings [--keep-comments]..........................50
3.14.5 Bundled Encodings and Encryption of Non-PHP Files...50
3.14.6 Limits on Bundled Encoding Files..50
3.14.7 Bundled Encodings and Encoded File Format...50

3.15 Miscellany.. 51
3.15.1 Encoding and Bytecode Optimisation [--optimise, --optimize]....................................51
3.15.2 Allowing Encoding into the Source Tree [--allow-encoding-into-source].....................51
3.15.3 Omitting Documentation Comments [--no-doc-comments]...52
3.15.4 Setting an alternate Shell Script Line [--shell-script-line]..52
3.15.5 Enforce Minimum Loader Version [--min-loader-version]...52
3.15.6 Check for Program Updates [--check-version]...52
3.15.7 Program Version [-V, --version]..52
3.15.8 Verbose Mode [-v, --verbose]...52
3.15.9 File Verify [--verify] (legacy option)...52
3.15.10 Help [-h, --help]...52

February 2025 ionCube Encoder 14 User Guide 5

CONTENTS

4 EXTERNAL AND DYNAMIC KEYS..53

4.1 Introduction... 53

4.2 External Keys... 54
4.2.1 File System External Keys [--encoding-key file:...]...54
4.2.2 Using Configuration Properties With External Keys [--encoding-key ini:...]................55
4.2.3 Where External Key ini Properties Can be Set...56
4.2.4 Using License Properties With External Keys [--encoding-key lic:...].........................56
4.2.5 External Keys and Security..57
4.2.6 Uniqueness of External Key Values...57
4.2.7 Errors That May Occur When Encoding With External Keys......................................58
4.2.8 Errors That May Occur With External Keys at Runtime..58

4.3 Dynamic Keys..59
4.3.1 Function Annotations to Specify Dynamic Keys...59
4.3.2 Rules for Expressions Used to Get the Decoding Key...61
4.3.3 Available Encryption Methods..63
4.3.4 Dynamic Keys for Whole Scripts..63
4.3.5 Dynamic Keys for Primary Scripts..63
4.3.6 Dynamic Keys and Closures..63
4.3.7 Chains of Functions Having Dynamic Keys..64
4.3.8 Performance Versus Security When Using Dynamic Keys...64
4.3.9 Using the Reflection API with Dynamic Decoding [--allow-reflection-all, --allow-

reflection] 65
4.3.10 Errors & Warnings Related to Dynamic Keys Produced by the Encoder....................66
4.3.11 Errors Related to Dynamic Keys That May Occur At Runtime....................................67
4.3.12 Controlling How Dynamic Decoding Errors Are Presented [--dynamic-key-errors].....67
4.3.13 Getting Dynamic Key Information With Verbose [--verbose]......................................67

5 LICENSE FILE GENERATION (Pro and Cerberus Editions)..68

5.1 Introduction to License Files..68

5.2 Creating License Files..70
5.2.1 Command Line Usage..70
5.2.2 Help [--help, -h]...70
5.2.3 Program version [--version, -v]...70
5.2.4 Output path [--output, -o]..70
5.2.5 Using Passphrases to Differentiate Products [--passphrase].....................................70
5.2.6 Setting License Restrictions [--allowed-server, --expose-server-restrictions].............70
5.2.7 Exclude checking of interface aliases [--ignore-interface-aliases]..............................71
5.2.8 Setting License Restrictions from Server Data [--use-server-file]...............................71
5.2.9 Selecting Adapters [--select-server-adapter, --select-adapters]..................................71
5.2.10 License Expiry [--expire-in, --expire-on, --expose-expiry]...72
5.2.11 License Properties [--property, --properties, --expose-property].................................72
5.2.12 License Property Checking [--enforce-property]...72
5.2.13 Customising the Header Block [--header-line]..72
5.2.14 Viewing Server Data Files [--decode-server-file]..72
5.2.15 Decoding a license [--decode-license, --decode-format]..74
5.2.16 Legacy compatibility [--compat]..76
5.2.17 Troubleshooting License Problems..76

February 2025 ionCube Encoder 14 User Guide 6

CONTENTS

6 LOADER API..77

6.1 File Information and Execution..77
6.1.1 Checking for an Encoded File [ioncube_file_is_encoded()]..77
6.1.2 General Encoded File Information [ioncube_file_info()]..77
6.1.3 Retrieving Properties Stored in an Encoded File [ioncube_file_properties()].............77
6.1.4 Retrieving the Loader String Version [ioncube_loader_version()]..............................77
6.1.5 Retrieving the Loader Integer Version [ioncube_loader_iversion()]............................77

6.2 License and Server Information...78
6.2.1 Retrieving Properties Stored in a License [ioncube_license_properties()].................78
6.2.2 Retrieving the List of Permissioned Servers [ioncube_licensed_servers()]................78
6.2.3 Creating a Server Data Block [ioncube_server_data()]..78

6.3 License Validation... 79
6.3.1 Validating License Properties [ioncube_check_license_properties()].........................79
6.3.2 Validating Licensed Servers [ioncube_license_matches_server()].............................79
6.3.3 Validating License Expiry [ioncube_license_has_expired()].......................................79

6.4 Encrypted File Support...80
6.4.1 Reading Encrypted Files [ioncube_read_file()]...80
6.4.2 Writing Encrypted Files [ioncube_write_file()]...80

6.5 Error codes.. 81

7 ERROR REPORTING...82

8 TROUBLESHOOTING..83

8.1 Unable to Start the Encoder...83
8.1.1 On Unix (Linux, FreeBSD, MacOS)..83
8.1.2 Using a 64 bit system...83
8.1.3 On Windows ..83

9 LOADER INSTALLATION...84

9.1 Loader Naming.. 84

9.2 Installation in a php.ini File..85

February 2025 ionCube Encoder 14 User Guide 7

INTRODUCTION

1 INTRODUCTION

The ionCube PHP Encoder is a powerful, high performance solution for encoding and licensing
PHP scripts, plus encrypting files of any type.

Encoding and Encryption Total Solution

The Encoder protects PHP /HTML scripts with obfuscated bytecode protection and a custom
execution engine. In addition, any other project files can be automatically encrypted if required,
which is ideal for protecting files such as templates or XML documents. This is complemented
by Loader API functions for reading and writing encrypted files. For most existing template
engines, a small change is all that would be required to add the ability to read encrypted
templates.

Bytecode Compilation and Obfuscation

The Encoder achieves script protection by first compiling and then optimising PHP scripts to
highly efficient binary data. The compilation process replaces source with virtual-machine
instructions and then applies several layers of encoding and transformations to produce the final
platform independent files. Optional class, method, function name and local variable
obfuscation adds extra protection, with further internal obfuscations applied at compile and
runtime. This approach has the advantage that files are never restored to PHP source code,
compiled code is changed and hidden from the Open Source PHP engine, and run-time
performance is comparable to source due to the parsing and compilation taking place at
encoding time. Other Encoder features offer further benefits, such as the easy addition of tamper
resistant plain text to the start of files, which is ideal for including custom copyright or license
details.

License File Creation

License files can be created for your projects with the Pro and Cerberus Encoders that lock your
projects to particular machines. License files can also have an optional time expiry, and can
store arbitrary key/value data that can be read at runtime by the licensed application.

ionCube Loader

The ionCube Loader handles execution of encoded PHP files, encrypting or decrypting non-PHP
files, validating licenses, and so on. This component is easily installed into a php.ini file, and
a free tool called the Loader Wizard is available to assist installation by end-users. Loaders are
available for a wide range of common and less-common platforms, and a service is also
available for producing Loaders on platforms outside of the standard range.

Windows and MacOS GUI

For Windows and MacOS users, a powerful GUI makes setting up projects simple. As well as
encoding features, integration with Explorer adds usability features such as dynamic icons to
distinguish between encoded and non-encoded files at a glance, and quick right click encoding
with a cut-down GUI. Source files can also be launched in a user’s preferred editor straight from
the GUI, and also at a specific line if supported by the editor; this is great for quickly squashing
syntax errors in rarely used code. Additional features are available in a Special Edition GUI
upgrade, such as automatic archive creation, FTP, and a unique dynamic fields feature that
dramatically simplifies data entry for custom encoding and license creation through a
dynamically created custom interface. Together with other features, the GUI helps to maximise
productivity.

February 2025 ionCube Encoder 14 User Guide 8

INTRODUCTION

1.1 Encoder Outline

The Encoder is driven by a command line interface allowing for easy automation and integration
into project build, test and release environments, and for calling from UNIX shell scripts or
Windows batch files. Encoding is quick, making it practical to perform “just in time” (JIT)
encoding if required.

Major features include:

 Current software version PLUS the two previous versions.

 Encoding of PHP 4 up to PHP 8.3 language syntax.

 Optional external and dynamically created keys, eliminating the need for keys within
encoded files.

 Bytecode encoding of PHP for optimal performance, reliability and protection.

 File encryption feature plus Loader API support for reading/writing encrypted data,
ideal for encrypting templates and XML documents.

 Choice of an ASCII encoded file format for reliable cross platform transfers with FTP or
binary file format.

 Optional compiled-code obfuscation of class, method, function and local variable
names.

 Single file or recursive directory encoding.

 Replication of source file attributes, i.e. times and permissions.

 Full control over the project items to be encoded, encrypted, copied or ignored.

 Custom text such as copyright details may be added to encoded files.

 Optional include-attack protection to block interaction with unauthorised files.

 Associating key/value properties with files.

 Projects feature to encode projects with pre-configured options.

 Custom Loader event messages or error handler callback.

 Automatic syntax checking and error reporting of encoded files.

 Syntax-check only operation.

 Bundled encodings where a file can include encodings from multiple encoders.

Features of the Pro Encoder include Basic Encoder features plus:

 Generating files to expire after a time period or on a specific date.

 Generating files restricted by IP addresses and/or domain names.

 Generating files to work only with a valid license file.

 License generator program for creating license files with time expiry, machine
restrictions and custom key/value properties.

 License generator for Linux included with the Windows Encoder.

Features of the Cerberus Encoder include Pro Encoder features plus:

 Generating files restricted to Ethernet (MAC) addresses.

 Creating license files with MAC address restrictions.

February 2025 ionCube Encoder 14 User Guide 9

INTRODUCTION

1.2 Using Encoded Files / the ionCube Loader

ionCube Encoded files contain compiled code with various layers of encoding, and a special
component must be available to process encoded files when required. The component for this
task is called the ionCube Loader, which is an engine extension to PHP. Loaders for common
platforms and architectures are provided as standard, and a porting service for producing
bespoke Loaders to target less common platforms is also available.

ionCube is the most widely used and recognised encoding technology, and Loaders are often
already installed by hosting providers, however a Loader Wizard PHP script is also available
that greatly assists with installation guidance when necessary.

See chapter 9 for more detailed information about Loader installation.

February 2025 ionCube Encoder 14 User Guide 10

INTRODUCTION

1.3 User Guide Notation

1.3.1 Command Examples

Command or other computer related text in the user guide is printed in monospace type.
Command examples are either written in the form:

ioncube_encoder source.php -o target.php

or in some places to illustrate command usage and output, as:

$./ioncube_encoder.sh -83 -V

ionCube PHP Encoder Version 14.0
Language Support: PHP 4, 5, 7, 8.1, 8.2, 8.3
Copyright (c) 2002-2024 ionCube Ltd.

In this case, shell input is shown in bold, and program output is plain. $ is an example shell
prompt for command entry and may be different on your own system.

1.3.2 Hints and Tips

Look out for hints and tips in the guide, for example:

You can use the bookmarks feature in Acrobat to quickly navigate the user
guide, or click on references in the text.

February 2025 ionCube Encoder 14 User Guide 11

INTRODUCTION

1.4 The Supplied Software

1.4.1 Software Versions

As well as the latest software, the two prior versions are included in the package. The previous
version (version 13) is termed legacy, and the one before that (version 12) we refer to as
obsolete. We include these so older versions of encoded files can be produced if desired.
Example use cases for this would be if having upgraded but wanting to decide when to start
creating files with the newer software, or if wanting to maintain a package built with an older
Encoder.

1.4.2 Running the Software

There are two ways to run the Encoder software. On Linux and FreeBSD the shell script
ioncube_encoder.sh can be used with the PHP version as an option, e.g.:

./ioncube_encoder.sh -83 hello.php -o hello_enc.php

The shell script selects the actual Encoder program to use, and in the example above, the PHP
8.3 Encoder would be used to encode the hello.php script and generate the encoded file
hello_enc.php.

By default the latest Encoder version will be selected, however the previous version (legacy)
can be selected by passing -L and the one before that (obsolete) with -O. For completeness, -C
can be used to select the current version, but this is optional as it's the default.

Passing -h to the script without specifying a PHP language will display help about the
ioncube_encoder.sh script. Used after a PHP version selection will pass the option to the
Encoder instead.

The alternative is to run a specific Encoder program directly. The Encoder programs themselves
are in the bin sub-directory, and suffixed with the PHP language number and the Encoder
version. For example, ioncube_encoder83_14.0 will be the PHP 8.3 Encoder of version
13.0 (the current version). If there are 64 bit versions, these would additionally have _64 in the
name. OnWindows, the program names have the usual .exe extension.

Some User Guide examples will refer to the shell script, however for convenience going
forward we shall mostly refer to the Encoder command line program simply as
ioncube_encoder. Replace this with your preferred choice of actual program depending on
your requirements. Examples that reference a specific PHP version will include an option such
as -83 that the shell script recognises to denote an Encoder for PHP 8.3.

1.4.3 Using on 64-bit Systems

64-bit Encoders are included on Linux as 32 bit support with distributions is increasingly being
phased out. Running the Encoder shell script on a 64-bit Linux system will automatically select
the 64-bit version, but if required, you can force use of the 32 bit version by adding the -x86
option to the command line. Using -x86-64 can be used to select the 64 bit version, but as the
script auto-detects, this should not be required.

On 64-bit FreeBSD systems you should install the 32-bit compatibility libraries to run the
FreeBSD Encoder as 64-bit Encoder binaries are not currently available for FreeBSD.

The Encoders for Windows are compatible with both 32 and 64 bit systems to avoid
unnecessary package bloat as there is no advantage of a 64 bit Encoder over a 32 bit one.

February 2025 ionCube Encoder 14 User Guide 12

INTRODUCTION

1.4.4 References to Unix

Aside from Microsoft Windows, the other supported operating systems for the ionCube Encoder
(Linux, FreeBSD and MacOS) are all UNIX®-like. For simplicity, the User Guide uses Unix to
collectively refer to those platforms.

1.4.5 Encoder PHP Language Coverage

The language coverage of the various Encoders is listed below.

ioncube_encoder83 is the PHP 8.3 Encoder, and should be used for encoding projects that
make use of PHP 8.3 language features. Files can run on PHP 8.3. This is the same as running
ioncube_encoder.sh -83

ioncube_encoder82 is the PHP 8.2 Encoder, and should be used for encoding projects that
make use of PHP 8.2 language features. Files can run on PHP 8.2. This is the same as running
ioncube_encoder.sh -82

ioncube_encoder81 is the PHP 8.1 Encoder, and should be used for encoding projects that
make use of PHP 8.1 language features. Files can run on PHP 8.1. This is the same as running
ioncube_encoder.sh -81

ioncube_encoder74 is the PHP 7.4 Encoder, and should be used for encoding projects that
make use of PHP 7.4 language features. Files can run on PHP 7.4. This is the same as running
ioncube_encoder.sh -74

ioncube_encoder72 is the PHP 7.2 Encoder, and should be used for encoding projects that
make use of PHP 7.2 language features. Files can run on PHP 7.2 and 7.4. This is the same as
running ioncube_encoder.sh -72

ioncube_encoder71 is the PHP 7.1 Encoder, and should be used for encoding projects that
make use of PHP 7.1 language features. Files can run on PHP 7.1, 7.2 and 7.4. This is the same
as running ioncube_encoder.sh -71

ioncube_encoder56 is the PHP 5.6 Encoder, and should be used for encoding projects that
make use of PHP 5.6 language features. Files can run on PHP 5.6 and 7.0. This is the same as
running ioncube_encoder.sh -56

ioncube_encoder55 is the PHP 5.5 Encoder, and should be used for encoding projects that
make use of PHP 5.5 language features. Files can run on PHP 5.5 and 5.6. This is the same as
running ioncube_encoder.sh -55

ioncube_encoder54 is the PHP 5.4 Encoder, and should be used for encoding projects that
make use of PHP 5.4 language features. Files can run on PHP 5.4, 5.5 and 5.6. This is the same
as running ioncube_encoder.sh -54

ioncube_encoder53 is the PHP 5.3 Encoder, and should be used for encoding projects that
make use of PHP 5.3 language features. Files can run on PHP 5.3, 5.4, 5.5 and 5.6. This is the
same as running ioncube_encoder.sh -53

February 2025 ionCube Encoder 14 User Guide 13

INTRODUCTION

ioncube_encoder5 is the Encoder for the first PHP 5 language, and should be used when a
project uses language features added to PHP 5, and none from the PHP 5.3 or subsequent
languages. Files can run on PHP 5.0.3 and higher. This is the same as running
ioncube_encoder.sh -5

ioncube_encoder4 is the PHP 4 Encoder, and should be used if encoding a project that is
required to run on servers using PHP 4.0.6 and higher but excluding PHP 5.4 onwards. This is
the same as running ioncube_encoder.sh -4

February 2025 ionCube Encoder 14 User Guide 14

GETTING STARTED

2 GETTING STARTED

This chapter introduces some of the most common features of the ionCube command line
Encoder, with quick-start examples for typical scenarios. For Windows and MacOS users, an
additional document describes the GUI. Chapter 3 describes all command line options in detail,
and will be a useful reference guide to features even if using the GUI. The License generation
program that comes with the Pro and Cerberus editions is described in chapter 5, and chapter 6
describes the Loader API, including features for reading and writing encrypted files.

If reading this guide using Acrobat, you can also use the Acrobat bookmarks feature to quickly
jump to different sections, and in the document you can click on hyperlinks, entries in the
contents section, and on any section references.

2.1 PHP Compatibility of Encoded Files

To achieve the best performance and security we recommend encoding using PHP 8.1 or later.

With ionCube, it is often possible to encode files for one version of PHP and run them on a
range of subsequent versions of the same PHP generation (i.e., 4, 5, 7, 8). For example, files
encoded for PHP 5.5 can run on systems using versions 5.5 and 5.6. Files encoded for PHP 7.1
can run on PHP 7.1 to 7.4.

Note however, that files encoded for PHP 8.1 can only run on PHP 8.1. Files must be encoded
for PHP 8.2 to be used on a PHP 8.2 or PHP 8.3 system. Files also cannot be encoded for a
version of PHP that does not support the syntax used; so for example, if using language features
from PHP 8.3, files cannot be encoded to run on PHP 8.2.

To support a range of PHP versions that is wider than supported by a single encoding, a
bundling feature is available that combines multiple encodings into a single file. For example,
encoding for PHP 7.1, 8.1 and 8.2 file can be bundled together in files that can work on targets
from PHP 7.1 up to PHP 8.3.

We recommend that an up-to-date loader is used for the latest and widest compatibility.

2.2 Running the Encoder

For convenience we suggest to ensure that the installation location for the ionCube Encoder
software has first been added to the user environment on Windows, or the Unix shell PATH
variable (e.g. in .bashrc or .profile). Otherwise you should specify the location of the
program with an absolute or relative appropriate path.

For example, if the Encoder software has been installed on a Unix system in
/usr/local/ioncube, the ioncube_encoder.sh program could be run as follows:

From any location as:

/usr/local/ioncube/ioncube_encoder.sh

Within the current directory of /usr/local/ioncube as:

./ioncube_encoder.sh

February 2025 ionCube Encoder 14 User Guide 15

GETTING STARTED

Or if the PATH variable contains /usr/local/ioncube then simply as:

ioncube_encoder.sh

Unless otherwise stated, command examples in this User Guide omit any path prefix and
assume that the PATH variable has been set correctly. If there is a failure to launch the software,
please check/use an appropriate path to the program, and see chapter 8 for troubleshooting
information if necessary.

February 2025 ionCube Encoder 14 User Guide 16

GETTING STARTED

2.3 Licensing the Encoder using Command Line

The Encoder software requires a valid license file, which is based on the identity of the machine
where the Encoder is to be used. This section explains how to license the software using the
command line, and the following section describes how to license using the GUI of the
Windows and MacOS editions.

There are two methods for obtaining a license file using the command line, automatic and
manual. The automatic method is recommended, and obtains a license in usually just a few
seconds over the Internet.

2.3.1 Automatic Licensing [--activate] (recommended)

The Encoder option --activate will try to automatically request a license for the software,
and should succeed if there is an available license or the machine is already licensed. If the
procedure fails due to a network problem then try again after a short while or use the manual
procedure in 2.3.2 below.

Example usage:

$./ioncube_encoder.sh --activate

The license has been activated successfully.

2.3.2 Manual Licensing [--gen-license-request]

The Encoder option --gen-license-request will create a license request file to be
emailed to ionCube for processing. The file is called licreq.txt. On Unix based systems
this will be created in the installation directory, and on Windows in a licensing folder located
within the public documents folder.

Example on a Unix system when run from within the install directory:

$./ioncube_encoder.sh --gen-license-request

Generating a license request for machine "kumquat" in file:

 /usr/local/ioncube_encoder/licreq.txt

Please email the licreq.txt file to licenses@ioncube.com for
processing.

Submitting your License Request

Send the license request file to licenses@ioncube.com for processing. Once processed, you will
receive a license file (lic.txt) at the email address on your ionCube members’ account.

Installing the License File

When the lic.txt license file has been received you should install this on the licensed
machine. On Unix systems, save the license file into the product installation directory; on
Windows, save to the licensing folder where the license request file was generated.

February 2025 ionCube Encoder 14 User Guide 17

mailto:licenses@ioncube.com

GETTING STARTED

2.4 Licensing the Encoder using the GUI

On Windows and MacOS, the software is most easily licensed using the GUI. There are two
ways to do this.

2.4.1 With an Active Internet Connection (recommended)

Choose the Activate License item on the Help menu of the Encoder GUI. After a few seconds the
software should be activated. If there is an error, a dialog will be displayed with further
information.

2.4.2 Via Email

If no Internet connection is available on the machine being licensed, a license request file can be
generated for submission via email. To generate a request file (licreq.txt), choose the
Generate License Request… item on the Help menu and pick a location to save the request file.
The license request file should then be emailed to licenses@ioncube.com. A license file will be
sent back via email, and when you receive the license file for the software, it should be installed
by choosing the Install License File… option on the Help menu to locate the license file
(lic.txt).

2.5 Transferring a License or Reinstalling a Machine

The Encoder is licensed on a per machine basis, but it is possible to periodically transfer a
license to a different machine, e.g. if upgrading. The first step is to deactivate (revoke) the
license on a licensed machine as described below, and this should always be done if possible.
On Windows this is done by uninstalling, and on Unix there is both an automatic and manual
process. The automatic process via the Internet is again recommended.

2.5.1 Deactivating a License on Windows

Uninstall the Encoder software via Windows Add/Remove programs; the uninstaller will attempt
to deactivate the license automatically over the Internet. If the license could not be deactivated,
a dialog with further instructions will be displayed.

2.5.2 Automatic Method [--deactivate] (recommended)

The option --deactivate will try to automatically deactivate a license for the software, and
should succeed if the software currently has a working license. If the procedure fails due to a
network problem then try again after a short while or use the manual procedure below.

2.5.3 Manual Method [--gen-revoke-request]

Run the Encoder with the --gen-revoke-request command line option on a machine
with a working license. A file called revoke_file.txt will be created in the Encoder
installation directory. The revoke file should be emailed to licenses@ioncube.com, and once it
has been successfully processed, the license may be used again as described above.

February 2025 ionCube Encoder 14 User Guide 18

mailto:licenses@ioncube.com
mailto:licenses@ioncube.com

GETTING STARTED

2.6 Command Line Basics

2.6.1 Command Line Format

The general form for running the Encoder to encode is either

ioncube_encoder [options] source -o target

or

ioncube_encoder [options] sources --into target

The -o option encodes source as target, where source and target are both either
single files or directories. When using --into the Encoder sources can be one or more files or
directories that are encoded into a target directory, keeping the same names. See sections 2.7 and
3.1 for more details.

As mentioned earlier, examples in the User Guide mostly use ioncube_encoder for the
program name, but remember that on Linux and FreeBSD you would ether use
ioncube_encoder.sh with the desired PHP target version, e.g. -83 (see section 1.4), or
the specific Encoder program directly. On Windows, the program would be
ioncube_encoder83.exe

To syntax check use -S and specify one or more files or directories.

ioncube_encoder [options] -S files_and_directories

2.6.2 Passing Command Line Options

Most Encoder options use descriptive names, starting with --. Options requiring a value may
use either an = character or white space to separate the option from its value.

Examples:

--add-comment="Encoded by ionCube"

--add-comment "Encoded by ionCube"

Encoder options can be abbreviated to the shortest string that makes them
unique. The Encoder will report an error if there are multiple choices.

February 2025 ionCube Encoder 14 User Guide 19

GETTING STARTED

2.6.3 Filename, Directory and Wildcard Pattern Matching

For options related to files, e.g. --encode and --encrypt, the Encoder provides flexible
pattern processing to match files and directories by name or wildcard patterns.

Matching Files

Names with no trailing path separator are considered to be filenames.

Examples:

Encode all files with default extensions and any files named x.inc

--encode x.inc

Encode all files with default extensions and any files named config/config.inc

--encode config/config.inc

Directories

Appending a file separator specifies directories.

Examples:

Ignore files in directory config and subdirectories

--ignore config/

Note: a similar option --skip is available from version 11 and offers improved performance
compared to --ignore.

Encrypt all files in any directories named templates

--encrypt templates/

Wildcard Matching

The Encoder also supports wildcard matching using the wildcard characters *, ? and [].

Wildcards are interpreted as follows:

Wildcard Character Matches

* Zero or more characters, e.g. *.inc

? Any single character, e.g. *.php?

[] Any character from a set, e.g. *.php[78]

[!] Any character not in the set, e.g. *.php[!4]

@ Substitute with the source directory for the project

February 2025 ionCube Encoder 14 User Guide 20

GETTING STARTED

Examples:

Encode files with default extensions and any files ending in .inc

--encode "*.inc"

Encode all files inside any directories named config

--encode "config/*"

Ignore all directories inside any directories named config

--ignore "config/*/"

Encode any files named config having one character after the name

--encode "config?"

Encode any files named doc0, doc1, doc2, … doc7

--encode "doc[0-7]"

Encode any files named configx, configy and configz

--encode "config[xyz].php"

2.6.4 Using Wildcard Characters on Unix

When specifying an option value containing a wildcard character, be sure to use quotes or to
escape the wildcard to prevent unintended shell expansion. Remember too that the Encoder can
process entire directories. It is generally not necessary to use wildcards to select multiple files to
be processed. The containing directory can be named instead.

Examples:

Use:

--encode "*.ini"

--encode *.ini

Instead of:

--encode *.ini

February 2025 ionCube Encoder 14 User Guide 21

GETTING STARTED

2.6.5 Source directory substitution using @

An @ character appearing at the front of a pattern will be replaced by the first source directory
specified on the Encoder command line. This ensures that a pattern has an absolute path,
avoiding any possible undesired matching.

For example, given a project structure containing directories
/project/config/config.php and /project/live/config/config.php,
using the option

--ignore config/config.php

would ignore both of config.php files when encoding, whereas

--ignore @/config/config.php

would ignore only /project/config/config.php. The benefit over hardcoding the full
path is a shorter command line with no dependency on the source location.

February 2025 ionCube Encoder 14 User Guide 22

GETTING STARTED

2.7 Quick-Start Encoding Examples

This section provides examples of how to use the Encoder to handle some common encoding
requirements. Filenames and directory paths are examples only.

2.7.1 Encoding Single Files

Examples:

Files can be encoded as another by specifying the file as the source and using -o to name the
target file. The target can be any filename.

Encode /project/file1.php as /encoded-project/file1.php

ioncube_encoder /project/file1.php -o /encoded-project/file1.php

Files can also be encoded into a directory using --into to name the target directory. The
encoded file is will be given the same name as the source file.

Encode /project/file1.php into directory /encoded-project

ioncube_encoder /project/file1.php --into /encoded-project

More than one source item can be specified when using --into but giving a directory as the
source is usually more convenient.

Encode /project/file1.php and /extra/file2.php into /encoded-project

ioncube_encoder /project/file1.php /extra/file2.php --into
/encoded-project

2.7.2 Encoding Directories

Entire directory hierarchies can be recursively encoded by specifying a directory as the source.
Files are either encoded or copied into the target. File attributes are also copied if possible, and
on Unix, any symbolic links will be replicated.

Examples:

Recursively encode /project as /encoded-project

ioncube_encoder /project -o /encoded-project

or

ioncube_encoder /project --into /encoded-projects

If the target directory already exists then you must specify how the Encoder should proceed. The
available choices are:

Encoder Option Action

--replace-target Replace the target directory.

--merge-target Merge files into the target directory.

--rename-target Rename the existing target by appending a unique number.

--update-target Similar to merge but only process the source file if its modified time is
later than the target’s modified time.

The --replace option is most commonly used.

February 2025 ionCube Encoder 14 User Guide 23

GETTING STARTED

2.7.3 Encoding Files with non-default File Extensions

By default the Encoder will encode files matching the pattern *.php and *.phtml, however
files and directories matching any pattern or name can be encoded by using --encode. This
option may be used as many times as required.

Example:

Encode files with default extensions and also any ending in .inc

ioncube_encoder --encode "*.inc" /project --into /encoded-projects

2.7.4 Encoding PHP Shell Scripts

The Encoder will encode shell scripts having PHP as their interpreter unless explicitly directed
otherwise with --copy or --ignore. By default, the first line of the source shell script will
be copied to the target, but a custom line can be used with the following option

--shell-script-line '#!/usr/bin/php -q'

where the text inside the quotes is an example shell script line. Any encoded script can be used
as a shell script by manually adding a shell script line to the encoded file after the encoding
process is complete, and similarly an encoded PHP shell script will remain a valid encoded PHP
script if the shell script line is removed. On Unix it is important to enclose the option argument
in single quotes as the ‘!’ character has a special meaning for most shells.

2.7.5 Encrypting Templates and other Files

As well as protecting PHP files, the Encoder can encrypt other files too, such as templates and
images. Using the Loader API, encrypted files can then be decrypted only by an encoded file
that was encoded by the same Encoder.

As an example of working with encrypted templates, a simple patch to the popular Smarty
template engine is available on the ionCube website, allowing the Smarty engine to process both
plain text and encrypted templates.

Example:

Encode PHP files with default extensions and encrypt files ending in .tpl

ioncube_encoder --encrypt "*.tpl" /project --into /encoded-projects

2.7.6 Leaving Files non-encoded

Files that would normally be encoded can be left non-encoded and just copied by using
--copy. This option may be used as many times as required.

Examples:

Encode /project into /encoded-projects leaving config/config.inc.php non-encoded

ioncube_encoder --copy config/config.inc.php /project --into
/encoded-projects

Exclude all files matching *_config.php from being encoded

ioncube_encoder --copy "*_config.php" /project --into /encoded-
projects

February 2025 ionCube Encoder 14 User Guide 24

GETTING STARTED

Exclude files in config and subdirectories from being encoded

ioncube_encoder --copy config/ /project --into /encoded-projects

Exclude files in config from being encoded but not subdirectories

ioncube_encoder --copy "config/*" /project --into /encoded-projects

2.7.7 Omitting Files from the Encoding Target

When encoding a directory the Encoder will usually fully replicate the directory hierarchy. It can
sometimes be necessary to ignore some items from the source tree and this is handled with the
--ignore option. This option may be used as many times as required.

Example:

Ignore .svn files and backup files

ioncube_encoder --ignore .svn/ --ignore "*~" /project --into
/encoded-projects

Use the -v option to see which files are being encoded, encrypted, copied,
or ignored when using --encode, --encrypt, --copy, --ignore and
--keep.

2.7.8 Adding Copyright and License Details to Encoded Files

Custom text can be added to the start of encoded PHP files, and this is useful for incorporating
your own license or copyright messages. Files are protected so that any changes to an encoded
file would prevent it from functioning, and so this text cannot be successfully removed.

Example:

ioncube_encoder --add-comment "Software written by FooSystems"
--add-comment "Licensed to SomeCompany Inc." /project
--into /encoded-projects

February 2025 ionCube Encoder 14 User Guide 25

ENCODER COMMAND LINE OPTIONS

3 ENCODER COMMAND LINE OPTIONS

This chapter describes all available command line options, grouped by their purpose.

3.1 Specifying the Source and Target

3.1.1 Source Items

The Encoder can be used to either encode single files or to recursively encode directories. Items
to encode are passed to the Encoder without any associated option.

3.1.2 The Encoder Target [-o, --into]

The Encoder target may be specified in two ways. The -o option encodes a single source file or
directory as a new name, and the --into option encodes one or more items into an existing
directory.

Examples:

Encode file hello.php as hello-encoded.php

ioncube_encoder hello.php -o hello-encoded.php

Encode directory /projects/test as /encoded-projects/test

ioncube_encoder /projects/test -o /encoded-projects/test

Encode project /projects/test into /encoded-projects

ioncube_encoder /projects/test --into /encoded-projects

Encode projects project1 and project2 into /encoded-projects

ioncube_encoder /projects/project1 /projects/project2 --into
/encoded-projects

Encode file1.php and file2.php into /home/encoded-files

ioncube_encoder file1.php file2.php --into /home/encoded-files

To protect against accidental error and possible loss of source files, the Encoder checks for
being asked to encode directories that lie within the target tree or encoding into a directory that
lies within the source tree. If encoding into the source tree is required then the option
--allow-encoding-into-source may be used, see 3.15.2 below.

February 2025 ionCube Encoder 14 User Guide 26

ENCODER COMMAND LINE OPTIONS

3.2 Encoded File Format

The Encoder can produce files in both binary and ASCII format. These formats are discussed
below.

3.2.1 ASCII Format [--ascii]

By default, the Encoder produces encoded files in ASCII format. These files contain only
printable characters, and may be safely transferred using FTP clients operating in either ASCII
or binary mode without being corrupted.

3.2.2 Binary Format [--binary]

Binary format files are marginally more efficient than files produced with the default ASCII
format. The advantages can be slightly improved runtime performance and a smaller file size,
however a significant disadvantage is that some file transfer and archive programs, particularly
on Windows, may corrupt binary encoded files during processing. Corruption can occur due to
different characters being used to represent line breaks on different operating systems, and
programs trying to convert these characters when crossing different operating systems.
Examples are the CuteFTP file transfer program, WinZip if the TAR smart cr/lf conversion
option is enabled (which it is by default), and FTP programs transferring in ASCII mode. Some
PHP IDE’s with FTP features only offer ASCII file transfers, and so guarantee problems.

Using Binary format files if installation of files is performed correctly using tools that will not
corrupt the files should be fine. However if this cannot be guaranteed, the default ASCII format
is recommended as it still offers good performance, and will greatly reduce the chance of users
accidentally corrupting files during installation.

Note that the binary format cannot be used with bundled encodings (section 3.14).

February 2025 ionCube Encoder 14 User Guide 27

ENCODER COMMAND LINE OPTIONS

3.3 Encoding to an Existing Directory Target

When an encoding target directory already exists, one of the following options must be used to
tell the Encoder what you want it to do. There are four choices, to replace the target, update the
target with changed files, merge files into the target, or to rename the target.

3.3.1 Replacing the Target [--replace-target]

This option replaces an existing target, ensuring that the target contains no files from a previous
encoding. This is the most common option to use when the target already exists.

3.3.2 Merging into the Target [--merge-target]

This will preserve the existing target, and all files processed from the source will either be
created in the target or overwrite any existing files. Note that any files already part of the target
but not present in the source project are preserved.

3.3.3 Renaming the Target [--rename-target]

This will rename the target directory by appending a number to it. The number used will be the
smallest number to produce a directory name that does not already exist. It is effectively a
backup option.

3.3.4 Updating the Target [--update-target]

This option is similar to --merge-target except that files are only processed if the modified
time of the source file is greater than the modified time of the existing target file, or if the target
file does not exist.

3.3.5 Create Target Path [--create-target]

Create any missing directory components of the target path.

3.3.6 Target Options and Bundled Encodings

Please note that the --replace-target, --merge-target, --rename-target and
--update-target options should not be used with the --bundle and --add-to-
bundle options (see section 3.14). If they are used together then an error will result.

February 2025 ionCube Encoder 14 User Guide 28

ENCODER COMMAND LINE OPTIONS

3.4 Selecting Files to be Encoded, Encrypted, Copied or Ignored

By default, the Encoder will encode files having names ending with .php and.phtml, and
encrypt any files specified with --encrypt. All other files will be copied. This section
explains how to encode and encrypt files with other extensions, how to prevent files from being
encoded, and how to exclude files from being part of the encoding target. For more examples,
please see section 2.7. Note that you can use the options described here multiple times and in
any order to describe precisely how you require the Encoder to process your project.

3.4.1 Encoding Specific PHP Files [--encode]

Use --encode to specify additional file patterns, files or directories to encode, or to reverse
the effect of --copy (see below).

Examples:

Encode all files ending in .inc as well as the default extensions

--encode "*.inc"

Also encode the file licenses/license.key

--encode licenses/license.key

Encode files in directory tests/encoded

--encode tests/encoded/

This last example would be useful if you had used --copy tests to tell the Encoder to copy
the directory tests, but where you want the subdirectory encoded to be encoded. Note that
this does not request all files to be encoded, but ensures that any files matching the default
extensions or other file patterns will be.

Encode all files in directory tests/encoded but not subdirectories

--encode "tests/encoded/*"

3.4.2 Encrypting Files [--encrypt]

Use --encrypt to specify files or directories that are to be encrypted. Encrypted files can be
decrypted by the Loader API ioncube_read_file() function, see section 6.4.1, and only
when called from a file encoded by the same purchased Encoder installation. Typical examples
would be encoding template or XML files.

Examples:

Encrypt files ending in .tpl or .xml

--encrypt "*.tpl" --encrypt "*.xml"

February 2025 ionCube Encoder 14 User Guide 29

ENCODER COMMAND LINE OPTIONS

3.4.3 Copy Files without Encoding or Encrypting [--copy]

Use --copy to copy files to the target directory without encoding or encrypting.

Examples:

Copy user_config.php instead of encoding it

--copy user_config.php

Copy files in directory config and subdirectories

--copy config/

Copy files in directory config but still encode files in any subdirectories

--copy "config/*"

3.4.4 Skipping Items in a Project [--skip]

Use --skip to skip files and directories in a project. This acts as if the matched items do not
exist, and should offer improved performance over the option to ignore files described below.

Example:

Skip .svn directories

--skip .svn/

3.4.5 Excluding Files from the Target [--ignore]

Similar to the skip option, --ignore will ignore files and directories and exclude them from
the target directory. The difference is that ignored items can still become part of the project
target if they match a subsequent --keep option, or are a directory that is part of the path to a
kept item. To support this, ignored directories are still recursively scanned to discover any items
that match a keep rule, which adds overhead. Unless taking advantage of this feature, using
--skip is therefore recommended instead for performance reasons.

3.4.6 Including Ignored Files [--keep]

Mentioned above, the effect of --ignore can be reversed by using --keep.

Example:

Ignore contents of directory project/tmp but keep files called README.txt

--ignore project/tmp/ --keep README.txt

In this example, project/tmp would be ignored and excluded from the target. However, if it
or any subdirectory contains a file called README.txt, the README.txt file would be kept
and still appear in the target. For this to be possible, the ignored parent directories in the path
would still be created to form a valid path.

The Encoder applies the options above in the order they appear.
Combining them can achieve precise control over which files are to be
encoded, encrypted, copied, or excluded. The -v option is useful to see
the effect of these options, and will show how files were processed.

February 2025 ionCube Encoder 14 User Guide 30

ENCODER COMMAND LINE OPTIONS

3.4.7 Including only Encoded Files into the Target [--only-include-encoded-files]

This option will produce a target containing only encoded files. Files that would otherwise be
copied are ignored.

February 2025 ionCube Encoder 14 User Guide 31

ENCODER COMMAND LINE OPTIONS

3.5 Bytecode Obfuscation

The ionCube PHP Encoder achieves a high level of protection by compiling PHP source code
into PHP bytecode, storing this in a proprietary format, and executing code inside the Loader
component. This is an analogous operation to compiling a C program into native machine code.
Although the entire source code is eliminated during this process, as with compiled C programs,
some symbols must remain. As a further level of protection, the ionCube Encoder can apply a
one-way binary transformation to obfuscate certain data, and elements such as function names
will then not be exposed in their original form by PHP features such as
get_defined_functions() and get_declared_classes(). This is different to
simple source code obfuscation that tends to be easily reversible, and in addition to user
controlled obfuscation, further obfuscations are automatically applied during compilation and at
runtime.

3.5.1 Obfuscating Compiled Bytecode Symbols [--obfuscate]

The Encoder can obfuscate the names of global functions, local variables, class names, method
names, and line numbers. Note that class related obfuscation is not available with the PHP 4
Encoder.

The easiest way to use this option is shown in the following example of enabling all features:

Obfuscate fully

--obfuscate all

This option can also be used with any combination of the tokens classes, methods,
functions, locals, linenos to allow the obfuscation of class/method/function names,
local variable names and line numbers. Separate tokens with a comma and no whitespace. Note
that variable variable assignment (e.g. $$keyName = $value) may not work as expected if
local variable obfuscation is used.

Example:

Obfuscate line numbers, class names and function names, but not local variables or method names

--obfuscate linenos,functions,classes

3.5.2 Specifying an Obfuscation Key [--obfuscation-key]

Even though the obfuscation uses a one-way, non reversible algorithm, a custom obfuscation
key prevents the possibility of reversal by chance. The obfuscation key must be supplied, and
the Encoder will generate an error if it is missing.

Example:

--obfuscate all --obfuscation-key "an apple a day"

February 2025 ionCube Encoder 14 User Guide 32

ENCODER COMMAND LINE OPTIONS

3.5.3 Specifying Obfuscation Exclusions [--obfuscation-exclusion-file]

While it is desirable to obfuscate an application, it is sometimes necessary to prevent certain
program elements from being obfuscated. For example, functions and methods external to the
application and called by the application should not be obfuscated. Similarly, application
interface functions called by external scripts should not be obfuscated.

To provide these exceptions, a text file can be used to specify any functions, classes and
methods whose names should not be obfuscated. The option --obfuscation-exclusion-
file should be used to pass the name of the file to the Encoder, and the file should have
sections [functions] [classes] and [methods], followed by the names of the items
to be excluded. The sections may appear in any order, and may be used more than once.
A # character can be used to introduce a comment.

As an example, the following file contents would exclude the class name GlobalModule, the
class name Module within the namespace Provider, the method getName(), and the
global functions fn1() and fn2().

[classes]

Exclude our GlobalModule class for introspection purposes

GlobalModule

Provider\Module

[methods]

getName

[functions]

fn1 # used with preg_replace so we mustn't obfuscate

fn2

For backwards compatibility, any names appearing before the first section name will be
interpreted as function names.

Note 1: excluding a function will also disable obfuscation of any local variables within that
function.

Note 2: excluding a class name will exclude just the name of the class from being obfuscated
and not any contents of the class, such as methods.

Note 3: for security reasons, excluding a method name will exclude it from being obfuscated in
all classes having a method of the same name, which avoids needing a reversible obfuscation
technique.

Note 4: variable variable assignment (e.g. $$keyName = $value) may not work as
expected if local variable obfuscation is used. Excluding the function from being obfuscated
where such assignments are used will handle this case.

February 2025 ionCube Encoder 14 User Guide 33

ENCODER COMMAND LINE OPTIONS

3.6 File Based Server Restrictions (Pro and Cerberus Editions)

The Pro and Cerberus Encoders can optionally encode files with server restrictions such that the
files will stop functioning beyond some point in time, and can also restrict the machines on
which files can be run. The options for restricting files are described below. As an alternative,
files can be restricted to require a license file containing time and server restrictions. The
License file approach is recommended and generally preferable, and is described in section 3.7
below.

3.6.1 Expiring Files after a Period [--expire-in]

Files can be set to expire after a given number of seconds, minutes, hours or days by using:

--expire-in <period>

where <period> is a number followed by either s, m, h or d to denote a period in seconds,
minutes, hours or days.

Examples:

Expire files in 7 days

--expire-in 7d

Expire files in 8 hours

--expire-in 8h

Note that the expiry period is relative to the time that files are encoded.

3.6.2 Expiring Files from a Date [--expire-on]

Files can be set to expire from a specific date by using:

--expire-on <yyyy-mm-dd>

Example:

Expire files from 2023-07-27

--expire-on 2023-07-27

3.6.3 Locking Files to Specific Domains and Servers [--allowed-server]

Encoded files can be restricted to load only on machines with specific IP addresses and/or
domain names. The domain name is also referred to as the server name1. Using the Cerberus
version, encoded files can also be restricted by MAC (Ethernet) address.

The complete syntax for server restricting files is:

--allowed-server [<domain names>][@[<IP addresses>]][{<MAC
address>}]

Each server specification can contain as many domain names and IP addresses as desired. If
using Cerberus, a MAC address restriction may also be given. At least one type of restriction
must be specified, but items are optional. The option may also be used more than once to specify
multiple restrictions. Note: There is a limit of 250 file based restrictions for an encoded file.

1 The server name is an attribute set by the web server for each domain or virtual host, and is the value
accessed in PHP as $_SERVER['SERVER_NAME'].

February 2025 ionCube Encoder 14 User Guide 34

ENCODER COMMAND LINE OPTIONS

Restricting by Domain Name

Specify domain names separated by commas and optionally ending the list with an @ character.

Examples:

Restrict files to www.foo.com

--allowed-server www.foo.com

Restrict files to www.foo.com and www.bar.com

--allowed-server www.foo.com,www.bar.com

Restrict files to name 1.2.3.4

--allowed-server 1.2.3.4@

Note the trailing @ after the name in this example. An @ after a list of domain names indicates
that all items before should be treated as domain names, even if they look like IP addresses.
Although rare, some domain names can look like the start of an IP address, and if writing a
script to automatically process domain names, it is recommended always to add an @ to the end
of the server names to avoid any misinterpretation.

Wildcard Domain Names

Domain name restrictions may contain wildcard characters. The wildcard characters have the
following interpretations:

Wildcard Character Matches

* Zero or more characters, e.g. *.foo.com

? Any single character, e.g. site?.foo.com

[] Any character from a set, e.g. site[123].foo.com

[!] Any character not in the set, e.g.
site[!89].foo.com

Restricting by IP Address

IP addresses may be specified as a single address, a range of addresses or a subnet. Multiple
addresses should be specified separated by commas.

Note:

1) When files are accessed via a web server, IP address restrictions are tested against the server
IP addressed reported by the web server. When accessed directly, IP restrictions are tested
against the network interfaces.

2) For security reasons it is not possible to lock the loopback, 127.0.0.1 localhost address.

Examples:

Restrict files to 192.168.1.4

--allowed-server 192.168.1.4

Restrict files to 192.168.1.4 and 192.168.1.20

--allowed-server 192.168.1.4,192.168.1.20

February 2025 ionCube Encoder 14 User Guide 35

ENCODER COMMAND LINE OPTIONS

Restrict files to 192.168.1.20 through 192.168.1.25

--allowed-server 192.168.1.20-192.168.1.25

or

--allowed-server 192.168.1.20-25

Restrict files to 192.168.1 subnet

--allowed-server 192.168.1

Restrict files to subnet with 28 significant bits

--allowed-server 192.168.1.255/28

Restricting by MAC Address

MAC addresses are composed of 6 bytes and should be specified using hex notation as follows.

Example:

Restrict to MAC 00:01:02:06:DA:5B

--allowed-server '{00:01:02:06:DA:5B}'

Combining Restrictions

Examples:

Restricting files to a domain name and an IP address

--allowed-server www.foo.com@192.168.1.2

Restricting files to a domain name and specific MAC address

--allowed-server 'www.foo.com{00:02:08:02:e0:c8}'

Restricting to either of two domains on either of two IP addresses

--allowed-server www.foo.com,www.bar.com@192.168.1.1,192.168.1.3

Restricting to a domain name, IP address and MAC address

--allowed-server 'www.foo.com@192.168.1.1{00:02:08:02:e0:c8}'

3.6.4 Using domain restricted scripts with PHP CLI [--trust-unnamed-servers]

By default, scripts restricted by domain will only run via a webserver, and fail with php-cli
because there is no domain name. Encoding files with the --trust-unnamed-servers
option will cause the Loader to ignore domain restrictions if run with php-cli (php-cgi still
enforces domain checks).
Note: domain name checks with license files are always ignored by php-cli.

3.6.5 Exclude checking of interface aliases [--ignore-interface-aliases]

Ignore interface aliases when checking IP restrictions, e.g. eth0:1

February 2025 ionCube Encoder 14 User Guide 36

ENCODER COMMAND LINE OPTIONS

3.7 License Based Server Restrictions (Pro and Cerberus Editions)

A flexible alternative to file based restrictions are license based restrictions. With this
mechanism, files are encoded to need a license file, and it is the license file that contains time
and server based restrictions rather than the encoded files themselves. A major advantage
compared to file based restrictions is that the encoded files may be encoded just once, with a
license file containing custom restrictions created for each installation. This is especially
beneficial when producing software updates as a single encoded update may be made available
to all users, whose existing license files will continue to control the updated encoded files. With
file based restrictions, it would be necessary to produce an update encoded for each installation
with the same restrictions as the original installation.

Note: License file restrictions override file based restrictions. To avoid accidentally setting file
based restrictions when files are encoded to use a license file, the Encoder will generate an error
if both file restrictions and license files are used.

3.7.1 Specifying a License File [--with-license]

To restrict files to require a license file, use the option

--with-license <path>

to specify the path of the license file that should be used to restrict the execution of the encoded
script. At runtime, the Loader will search for the license file relative to the location of the
encoded script, so a relative path should be used when specifying the license. The path will
often be just the name of the license file, e.g. license.txt

Typically an application will have a single top level directory. In this case the license file could
be saved into this top level directory, and the filename of the license could be used on the
command line instead of a more complicated relative path. If the Loader cannot locate the
license file relative to the PHP script that needs it, the Loader will search parent directories until
either the License file is found or there are no further parent directories.

3.7.2 Specifying a Passphrase [--passphrase]

License files are encrypted using industry proven algorithms, and with the encryption keyed
with a passphrase. Use the command line option

--passphrase <key>

to specify a passphrase. The passphrase used when encoding files must match the passphrase
used to generate the corresponding license file in order for the Loader to successfully decrypt
the license file when the script is executed. See section 5.2.5 below for more details. If the
Loader cannot decrypt the license file it will prevent execution of the script.

February 2025 ionCube Encoder 14 User Guide 37

ENCODER COMMAND LINE OPTIONS

3.7.3 License Check Mode [--license-check]

When an encoded file restricted by a license is read by the Loader, there are two methods by
which the license restrictions can be enforced.

Automatic License Checking

With automatic checking, the Loader will ensure that all server restrictions are matched, that the
license has not expired, and that all enforced properties are matched in the license file (see
section 5.2.12 below). This is the default method, but it can also be specified by encoding with
the option

--license-check auto

Script Based License Checking

Script based checking is an alternative that encodes files so that they will still run even if their
license file has expired or is not matched to their server. A script can then use the Loader API to
validate properties, server restrictions, and any expiry date contained in the license. In order to
implement a manual license check, and so prevent the Loader from automatically validating the
license, encode files with the option

--license-check script

Several Loader API functions useful when implementing a manual license check are described
in chapter 6. Be careful to ensure code security when implementing a license validator in PHP.
In particular if a validator is contained in a file which will be included in each top-level script,
then it is necessary to use Include File Protection to ensure that a hostile user cannot replace the
validator with a different file.

February 2025 ionCube Encoder 14 User Guide 38

ENCODER COMMAND LINE OPTIONS

3.8 Target File Attributes

3.8.1 Copying with Hard Links [--use-hard-links]

The Encoder will normally copy any files into the target that are neither encoded nor encrypted.
This is fast, but performance can be improved and disc space saved by using the
--use-hard-links option to replicate by using hard links. This feature is only available
with Unix Encoders, and only if the source and target files are on the same filesystem.

3.8.2 Using Default File Permissions [--without-keeping-file-perms]

This option applies the default file permissions to target files instead of copying permissions of
the corresponding source file.

3.8.3 Updating File Times [--without-keeping-file-times]

This option creates target files with a current timestamp instead of copying times from the
corresponding source file.

3.8.4 File Ownership [--without-keeping-file-owner]

When running as root on Unix the Encoder will usually copy file ownership from source files
and directories. This option will create target items as the user running the Encoder.

3.8.5 Setting File Ownership [--apply-file-user, --apply-file-group]

When running the Encoder as root on Unix, different user and group IDs can be set for target
files with:

--apply-file-user <user id/name>

--apply-file-group <group id/name>

The id or name may be either a numeric id or a name.

February 2025 ionCube Encoder 14 User Guide 39

ENCODER COMMAND LINE OPTIONS

3.9 Language Options

3.9.1 Ignoring Short Open Tags [--no-short-open-tags]

Use this option to recognise only PHP files that use <?php ?> style tags. By default the
Encoders for PHP 4, 5 and 7 recognise both <?php ?> and <? ?> style. Note that support for
short open tags was removed in PHP 8, so they are unrecognised even if this option is not used.
Note also that this option will be removed in a future version of the software, so its use is
discouraged.

3.9.2 Ignoring Strict Language Warnings [--ignore-strict-warnings]

This option ignores warnings generated by the compiler from the use of language features that
go against strict language usage rules. Resolving source code issues rather than using this option
to hide them is recommended in the long term.

3.9.3 Ignoring Deprecated Feature Warnings [--ignore-deprecated-warnings]

This option ignores warnings generated by the compiler from the use of deprecated language
features. Resolving source code issues rather than using this option to hide them is
recommended in the long term.

3.9.4 Register Custom Auto Globals [--register-autoglobal]

Specify the names of custom variables that are to be treated as if they were autoglobals (also
known as superglobals).

For example:

--register-autoglobal MYAUTO

would encode access to $MYAUTO as if it were a global even if not explicitly made global with
the global keyword. It is not necessary to use this option for standard autoglobals, but this
feature may be useful if encoding files containing references to variables that are declared as
autoglobals by a PHP module that will be used in the target system but that is unknown to the
Encoder.

February 2025 ionCube Encoder 14 User Guide 40

ENCODER COMMAND LINE OPTIONS

3.10 Encoded File Header Customisation

NOTE: Runtime (on demand) install for older versions of the Loader as mentioned below is a
feature that uses the dl() function in PHP, which in PHP 5.3 became restricted and less
flexible, and will be removed completely from PHP in the future. Features related to runtime
install of the Loader are described for completeness as they still exist, however installing of the
Loader should generally be achieved via a php.ini file.

Encoded files contain a PHP header (the preamble) that, if required, will perform the run-time
installation of the Loader. It will also produce an error message if no Loader could be installed
or in some cases of file corruption. The default header is ideal for most cases, however Encoder
options support customising parts of the header and for setting an entirely new header.

Files may also have custom comments added. This feature offers the addition of plain text such
as copyright messages, a product version number, contact details, and so on. Embedded digital
signatures protect encoded files from tampering, and any modifications to an encoded file will
render it useless so that such messages cannot be successfully changed or removed.

3.10.1 Generating Files with no PHP Header [--without-loader-check]

This option produces files with no PHP header and only the encoded file data. When running
files without a header there will be no error produced if there is no Loader installed and the
Loader must be installed in the php.ini file.

3.10.2 Customising the ‘no Loader installed’ Message [--message-if-no-loader]

To customise the message produced if no Loader is installed, use:

--message-if-no-loader <text>

<text> must be a valid PHP expression and is passed to the PHP die() function.

Example:

--message-if-no-loader "'No Loader is installed. Please contact
support.'"

Note the use of single quotes around the message because a string is being passed to the die()
function.

3.10.3 Customising the ‘no Loader installed’ Action [--action-if-no-loader]

To customise the action when no Loader is installed, use:

--action-if-no-loader <php code>

3.10.4 Setting the Run-Time Loader Path [--loader-path]

To change the run-time Loader path, use:

--loader-path <path>

The current default setting performs selection of the Loader based on operating system type and
PHP version, and is:

'/ioncube/ioncube_loader_'.$__oc.'_'.substr(phpversion(),0,3).
(($__oc=='win')?'.dll':'.so')

February 2025 ionCube Encoder 14 User Guide 41

ENCODER COMMAND LINE OPTIONS

$__oc is predefined in the header as:

strtolower(substr(php_uname(),0,3))

Changing the Loader path may be useful if you wish to distribute Loaders with your application
but in a different directory, or if you wish to use run-time Loading but do not need to use the
dynamic selection of the Loader.

3.10.5 Setting the Header Code [--preamble-file]

The entire PHP header may be set by using:

--preamble-file <file>

<file> should be the path to a file containing PHP code to place at the start of the encoded
files.

3.10.6 Header Comments [--add-comment, --add-comments]

To add text to appear as comments at the start of encoded files, use:

--add-comment <text>

The option may be used as many times as required.

To add comments from a file, use:

--add-comments <file>

Examples:

--add-comment "Copyright New FooBar Inc. 2023" --add-comment "All
Rights Reserved"

--add-comments custom/comments.txt

February 2025 ionCube Encoder 14 User Guide 42

ENCODER COMMAND LINE OPTIONS

3.11 Customising Loader Behaviour

3.11.1 Loader Event Messages [--loader-event]

Loader messages generated by run-time events can be customised at encoding time to those of
your own choice.

For each web request, Loader messages customised by an encoded file will take effect for all
other encoded files unless a later included file provides a different message.

To customise an event message, use:

--loader-event "<event>=<message>"

<event> should be the event type to customise and <message> the text to associate with the
event.

Event types are:

Event Type Triggered When…

corrupt-file An encoded file has been corrupted.

expired-file An encoded file has reached its expiry time.

no-permissions An encoded file has a server restriction and is used on a
non-authorised system.

clock-skew An encoded file is used on a system where the clock is
set more than 24 hours before the file was encoded.

license-not-found The license file required by an encoded script could not
be found.

license-corrupt The license file has been altered or the passphrase used
to decrypt the license was incorrect.

license-expired The license file has reached its expiry time.

license-property-invalid A property marked as ‘enforced’ in the license file was
not matched by a property contained in the encoded file.

license-header-invalid The header block of the license file has been altered.

license-server-invalid The license has a server restriction and is used on a non-
authorised system.

unauth-including-file The encoded file has been included by a file which is
either non-encoded or has incorrect properties.

unauth-included-file The encoded file has included a file which is either non-
encoded or has incorrect properties.

unauth-append-prepend-file The php.ini has either the --auto-append-file
or --auto-prepend-file setting enabled.

February 2025 ionCube Encoder 14 User Guide 43

ENCODER COMMAND LINE OPTIONS

Example:

--loader-event "expired-file=This software has expired."

Custom messages may also contain display formats. Each format is replaced with specific text
as follows.

Format Replaced With

%f The path of the file generating the event.

%i Server IP address (‘no-permissions’ event only).

%h Server name (‘no-permissions’ event only).

%n The path of the unauthorised including or included file.

3.11.2 Callback Files [--callback-file]

To implement a more elaborate error handling mechanism than with Loader Events, a
callback file can be specified to handle Loader error cases. Use the option

--callback-file <relative-path>

to specify a callback file. The path should be relative to the top-level directory of the PHP
application. In particular, if the callback file is contained in the top-level directory, then specify
the filename rather than a full path.

The callback file should contain a function with the signature:

function ioncube_event_handler($err_code, $params)

The error code will be passed as the first argument, and an associative array of context-
dependent values will be passed as the second argument. The error code is an integer, and for
convenience the Loader defines constants for all event error codes. See section 3.11.3 for a list
of all constants.

The name of the file that caused the error is always passed as a parameter with key
current_file, and for server restriction errors parameters are passed with keys
domain_name and ip_address. The path to the expected license file is passed with key
license_file, and for errors related to include file restrictions, the file that included the
encoded file, or was included by the encoded file, is passed with key include_file.

February 2025 ionCube Encoder 14 User Guide 44

ENCODER COMMAND LINE OPTIONS

3.11.3 Loader Event Constants

The Loader defines PHP constants corresponding to the supported error codes. These codes
correspond to the Loader events described in the previous section follow:

Value PHP constant Loader Event

1 ION_CORRUPT_FILE corrupt-file

2 ION_EXPIRED_FILE expired-file

3 ION_NO_PERMISSIONS no-permissions

4 ION_CLOCK_SKEW clock-skew

5 (constant intentionally unused)

6 ION_LICENSE_NOT_FOUND license-not-found

7 ION_LICENSE_CORRUPT license-corrupt

8 ION_LICENSE_EXPIRED license-expired

9 ION_LICENSE_PROPERTY_INVALID license-property-invalid

10 ION_LICENSE_HEADER_INVALID license-header-invalid

11 ION_LICENSE_SERVER_INVALID license-server-invalid

12 ION_UNAUTH_INCLUDING_FILE unauth-including-file

13 ION_UNAUTH_INCLUDED_FILE unauth-included-file

14 ION_UNAUTH_APPEND_PREPEND_FILE unauth-append-prepend-file

February 2025 ionCube Encoder 14 User Guide 45

ENCODER COMMAND LINE OPTIONS

3.12 File Properties and Include Attack Prevention

File properties are key-value pair data items that are securely stored as metadata in encoded
files, separate to the PHP code. Properties can be read by a Loader API function, and also used
with the include attack prevention system. Include attacks are where program scripts are
replaced by unauthorised ones in an attempt to change program behaviour. To guard against this,
encoded files can be protected so that they can only be included by a file with specific properties
defined, and so that they can only include a file if it has certain properties. This powerful feature
can also help prevent unauthorised use of libraries by allowing your included files to only be
included by your own application, and not by someone else’s program.

3.12.1 Setting Properties [--property, --properties]

To define one or more properties, use:

--property "<name>[=<value>]"

--properties "<name>[=<value>][, ...]"

name is the name of the property to be defined and value is the property value. Use a comma
to separate multiple properties.

Values can be numeric, a string that is optionally delimited by ' ' or " ", or an array
delimited by { }. Array elements may optionally have keys.

Examples:

Define a property version with integer value 5

--property version=5

Define a property version with string value "2.0"

--property "version='2.0'"

Define several properties

--properties "version=1,company='Foo Technologies'"

Define an array

--property "features={options=>{'save','load'},licensed_to=>'Foo
Tech Inc.'}"

February 2025 ionCube Encoder 14 User Guide 46

ENCODER COMMAND LINE OPTIONS

3.12.2 Include Attack Prevention [--include-if-property]

To restrict which files can be included by a file and also the files that can include a file, use:

--include-if-property "<name>=[<value>][, ...]"

Property name and value are as defined in section 3.12.1 above.

This option may be used more than once to define multiple sets of required properties.

Examples:

Include files if property program_name has value "my app"

--include-if-property "program_name='my app'"

Include files if property pname is either "app1" or "app2"

--include-if-property "pname='app1'" --include-if-property
"pname='app2'"

3.12.3 Preventing Prepend and Append File Usage [--disable-auto-prepend-append]

By utilising the auto_prepend_file and auto_append_file settings in a php.ini
file, it is possible to specify a PHP file which should run before or after any other scripts. This
may undermine the security of encoded PHP scripts, and can be disabled using the option

--disable-auto-prepend-append

If this option is used and a server has either the append or prepend php.ini setting enabled,
the encoded scripts will not run. Some servers may have a legitimate reason for enabling these
settings, so this Encoder option is not enabled by default.

February 2025 ionCube Encoder 14 User Guide 47

ENCODER COMMAND LINE OPTIONS

3.13 Project Handling

Setting up the Encoder for single-command repeat encoding of projects can easily be performed
using Unix shell scripts or Windows batch files, however the Encoder also has a built-in projects
handling feature that may usefully be used as well or instead.

The projects feature uses a project file to store and provide command line options. Project file
options are merged with any additional options passed to the Encoder, and the project file may
be updated or recreated when required. As the project file is a plain text file, it can also be edited
if necessary.

3.13.1 Specifying the Project File [--project-file]

The project file to use is set with:

--project-file <file>

Once a project file has been created, to encode with the given project options, only this option
need be used.

3.13.2 Creating the Project File [--create-project]

This option creates the project file named with --project-file. The file is created or
overwritten, and is set with whatever other options are used to the Encoder.

Examples:

Create and initialise project file p1

ioncube_encoder --project-file p1 --create-project /project1 --into
/encoded-apps

Repeat encoding based on project file p1

ioncube_encoder --project-file p1

Repeat encoding based on project file p1 but with verbose mode enabled

ioncube_encoder --project-file p1 --verbose

3.13.3 Update a Project File [--update-project]

This option updates a project file by merging in any new options.

Example:

Repeat encoding based on project file p1 but permanently add the --replace option

ioncube_encoder --project-file p1 --replace --update-project

February 2025 ionCube Encoder 14 User Guide 48

ENCODER COMMAND LINE OPTIONS

3.14 Bundled Encodings

Multiple encodings may be added to one encoded file to cover cases where an encoded file is
not supported by all of the desired target possibilities. This is useful for the transition between
generations of PHP, such as PHP 5 to PHP 7 and PHP 7 to PHP 8, and for PHP 8.1 and 8.2.

3.14.1 Starting a Bundled Encoding [--bundle, -B]

A bundled encoding can be started by using the --bundle option (short form: -B) to the
Encoder. We could start a bundle with the Encoder for PHP 7.1 :

ioncube_encoder -71 --bundle example_dir -o example_dir_encoded

which will use the PHP 7.1 Encoder to encode all files in the example_dir to produce the
files in example_dir_encoded. As those stand, the encoded files can run on PHP 7.1 to
7.4. The files in example_dir_encoded can then have other encodings added to them by
using the --add-to-bundle option.

3.14.2 Adding to a Bundled Encoding [--add-to-bundle, -A]

Extra encodings can be added to an existing bundled encoding with the --add-to-bundle
option(short form: -A):

ioncube_encoder -81 --add-to-bundle example_dir -o
example_dir_encoded

That adds PHP 8.1 encoding to the encoded files already in example_dir_encoded. The
resulting encoded files will then run on PHP 7.1 to 7.4 and 8.1 with the appropriate ionCube
Loader installed. Additionally, adding a further encoding for PHP 8.2 would cover PHP 8.2 and
8.3, as the Loader for PHP 8.3 can process files encoded for PHP 8.2 as well as those encoded
specifically for PHP 8.3.

A file in the target must exist if a file with the same name in the source is being encoded with the
--add-to-bundle option. If the file in the target does not exist then an error will result.

Adding to an encoding to a file having that encoding already will also produce an error. e.g.

$ ioncube_encoder -81 --add-to-bundle example_dir -o
example_dir_encoded

Error: Encoding with PHP source language 8.1 already exists

3.14.3 Bundled encoding and the --*-target options

The --replace-target, --merge-target, --rename-target and --update-
target options should not be used with the --bundle and --add-to-bundle options.
This is because the --bundle option will replace the existing directory, and --add-to-
bundle will add encodings to those files. Each file to be encoded in the source must have a
corresponding file in the target for adding to a bundle to work. So the following will produce an
error:

$ ioncube_encoder -81 --add-to-bundle --merge-target example_dir -o
example_dir_encoded

Error: Only one of --update-target, --rename-target, --replace-
target, --merge-target, --bundle and --add-to-bundle should be given.

February 2025 ionCube Encoder 14 User Guide 49

ENCODER COMMAND LINE OPTIONS

3.14.4 Adding header comments with extra encodings [--keep-comments]

Header comments are normally only added to the first encoding in a bundle as otherwise the
comments would appear down in the body of the file just before the start of the encoding being
added. So if you have give an --add-comment option along with the --add-to-bundle
option then the comment will just be ignored rather than added before the extra encoding. If you
really do want the comment to be added before the new encoding then please use the --keep-
comments option:

ioncube_encoder -81 --add-to-bundle --keep-comments --add-comment “A
comment for the extra encoding” example_dir -o example_dir_encoded

In the resulting encoded files the comment “A comment for the extra encoding”
will appear just before the start of the PHP 8.1 encoding that has been added.

So in the resulting encoded file you would see something like this at the point where the latest
encoding has been added:

AfqqdUbOzrICH8asIGy6/FERcTNRy8sfholmrB/aiQJrfm/7q9/EBV04MsDcoQ8q8xVReaL
2bXnvggG1OYXQ5mAFAzBTN3YSGcx5aYs0yvHjMgT2DO2HgMdOFGePRTDZ3rp/24PZefUofH
fcl00hMcMjAXtyKszeTf0HoTXSJl/p6/kUBs6grf8Kp4zOFPRINQVBdTGoXKsGFmsN9tm3W
O8RDhU+82TPj6PLTkSlycK65AE4Fkyl0BXVWR60FlVFHTbwIqRiqTxY+SibTXtZJz9kb2w9
t5x7hgg6IkNZ=
<?php //00032

// A comment for the extra encoding

?>
HR+cPuepB5Wa0PMVCOsvU+8+sBZoYulWKypbDgkuoRL2Eoa/4nbupwJV/weQVVOeaw3xS3V
B7UzKZU2LnaERgnll7uWv/zJwSrHArdntAt3e7ihdGwrElUtBiCKWEFVSufwYhDnopqsqg5
D04Vn1O8BzbqUpU+N1DCqx7hGmlfQ58dtjOtz2dmdMSJgMbGONefqu704H6TXlTsSBaTGDG
QqrfYnGG6tJoM8tR1aCO2zCBIE/t0e4k62yH67QPVZVysMAdfUeJ2y1ppBpwd2s1s+C9dWL
wwXeLTpwcmp1P+9QC14A5zP70fWkXs21O0Bx92iKiCS4tw/H+HOXAtxVyE+qXUqYn0NOx+L
qt36kTnnDvEqGvTNpqoBkNyXq

3.14.5 Bundled Encodings and Encryption of Non-PHP Files

Bundled encoding has no effect on the encryption of non-PHP files. So if a new encoding is
being added to a bundle then the non-PHP files are simply re-encrypted each time.

3.14.6 Limits on Bundled Encoding Files

Bundled encodings cannot go beyond 268MB. If an attempt is made to add an encoding beyond
that limit then an error will result.

3.14.7 Bundled Encodings and Encoded File Format

Bundled encodings can only be used with the ASCII encoding format. They cannot be used with
the binary encoding format.

February 2025 ionCube Encoder 14 User Guide 50

ENCODER COMMAND LINE OPTIONS

3.15 Miscellany

3.15.1 Encoding and Bytecode Optimisation [--optimise, --optimize]

By default, the Encoder uses an encoding format that encodes with the best Encoder
performance and good run-time performance. At the expense of increased encoding time,
smaller files with possibly marginally better run-time performance may be obtained by
increasing the optimisation level.

The options:

--optimise more

--optimise max

increase optimisation to either an intermediate or a maximum level.

The option --optimize is an alias for --optimise

3.15.2 Allowing Encoding into the Source Tree [--allow-encoding-into-source]

By default, the Encoder prevents a target directory to be within the source tree or for the source
directory to be within the target tree. This is to prevent accidental overwriting of source files or
unexpected results. The --allow-encoding-into-source option allows this. To avoid
the target being treated as part of the source tree use the --ignore option to ignore the target.

Examples:

In these examples we have a simple project in a directory called test. The project contains the
file helloworld.php

Encoding with the default safety check

$ ioncube_encoder test -o test/encoded

Error: Can’t encode to a directory within the source tree

The Encoder safety check prevented encoding because the target is within the source tree.

Encoding with the default safety check disabled

$ ioncube_encoder test -o test/encoded --allow-encoding-into-source --ignore encoded/

$ ls -R test

test:

encoded/ helloworld.php

test/encoded:

helloworld.php

February 2025 ionCube Encoder 14 User Guide 51

Source directory
with source file and
encoded target

Target directory with
encoded result

ENCODER COMMAND LINE OPTIONS

3.15.3 Omitting Documentation Comments [--no-doc-comments]

Documentation comments are comments with the following syntax:

/**
My code comment
*/

These comments are exposed by the PHP 5 reflection API, and are preserved by the PHP 5
Encoder by default. In order to omit these documentation comments from encoded files specify
the --no-doc-comments option.

3.15.4 Setting an alternate Shell Script Line [--shell-script-line]

The Encoder will encode shell scripts having PHP as their interpreter unless explicitly directed
otherwise with --copy or --ignore. By default, the first line of the source shell script will
be copied to the target, but a custom line can be used with the following option

--shell-script-line '#!/usr/bin/php -q'

where the text inside the quotes is an example shell script line. Any encoded script can be used
as a shell script by manually adding a shell script line to the encoded file after the encoding
process is complete, and similarly an encoded PHP shell script will remain a valid encoded PHP
script if the shell script line is removed. On Unix it is important to enclose the option argument
in single quotes as the ‘!’ character has a special meaning for most shells.

3.15.5 Enforce Minimum Loader Version [--min-loader-version]

This option encodes files with a requirement that the Loader version is of the specified version
or greater. This can be useful to ensure that a particular feature of the Loader is supported. The
option should be specified as a version string in the format major[.minor[.revision]].

Example:

--min-loader-version 12.0.0

3.15.6 Check for Program Updates [--check-version]

Check for the availability of a program update.

3.15.7 Program Version [-V, --version]

Displays the program version.

3.15.8 Verbose Mode [-v, --verbose]

Verbose mode will produce details of Encoder operations and progress.

3.15.9 File Verify [--verify] (legacy option)

If run-time loading is to be used then files must be able to be read and parsed by the PHP engine
as valid PHP files. This will increase encoding time, and is a legacy option that would only be
necessary if you had customised the PHP header and wish to check it.

3.15.10 Help [-h, --help]

This option displays a summary of Encoder options.

February 2025 ionCube Encoder 14 User Guide 52

EXTERNAL AND DYNAMIC KEYS

4 EXTERNAL AND DYNAMIC KEYS

4.1 Introduction

As part of a protection strategy, compiled code encoding systems may protect the compiled code
(bytecode) with some kind of key in order to present challenges to a would-be hacker intent on
analysing the files. Such a key must be present when files are processed otherwise running the
protected code would not be possible, and a key will normally be stored somewhere within the
protected file itself. This can work well, but if an attacker has learnt how keys are stored, their
effectiveness is inevitably diminished.

A more powerful approach is to have keys that are not within the files that they protect, and the
ionCube Encoder has two innovative mechanisms that can be used to present significant
challenges to would be attackers.

External Keys allows for static keys to be located externally to the encoded files, and is
particularly useful where the end user is trusted and the key file(s) can be kept away and
protected with file permissions more than the encoded files themselves. You might choose to
protect files of your own website this way.

Dynamic Keys is a radical concept whereby decoding keys do not exist statically at all, and
instead, only exist at runtime and as a result of running part of the protected program itself. This
is described in depth from section 4.3.

Please note that these features are only available for the PHP 5.3 and above Encoders, so
ioncube_encoder53, ioncube_encoder54, etc. up to ioncube_encoder83. They
cannot be used with the ioncube_encoder (for PHP 4) and the ioncube_encoder5 (for
PHP 5.0) binaries.

Both features mean that all or part of an encoded file cannot be decoded using just the encoded
file contents. External keys will require additional information from some other file location
and dynamic keys will only be generated during the actual execution of the file.

Note that if an external or dynamic key is not correct at runtime then
unpredictable behaviour may occur. Whilst the ionCube Loader tries to catch
such errors in decoding, in some situations they may not be caught and this may
cause PHP to fail.

February 2025 ionCube Encoder 14 User Guide 53

EXTERNAL AND DYNAMIC KEYS

4.2 External Keys

External keys are encoding keys located outside of an encoded file. A key may be a string value,
or the contents of a file. Their use means that anybody trying to reverse engineer an encoded file
will need not only the encoded file itself, but also the separately stored external key. External
keys affect how the entire file is encoded. There are three types of location for an external key:

• As a file on the system.

• As a PHP configuration (php.ini) property.

• As a property of a license file required by an encoded file.

4.2.1 File System External Keys [--encoding-key file:...]

For file system keys, the format of the option is:

--encoding-key file:<RUNTIME FILE PATH>=<ENCODING-TIME PATH>

In the above, the <ENCODING-TIME PATH> will be the absolute path to the file whose
contents will be used as the encoding key.

The <RUNTIME FILE PATH> will be the relative or absolute path to the file used by the
ionCube Loader to decode the encoded file at runtime.

As an example, suppose we have a file called test.php that we want to encode to produce a
file called test_enc.php. We will use the contents of a file /home/dev/mytext.txt as
the encoding key. When the encoded file is run by the Loader, it should read the same key from
the file dk.txt that is located in a directory called xyz. To do this, we would encode as
follows:

$ ioncube_encoder test.php -o test_enc.php --encoding-key
'file:xyz/dk.txt=/home/dev/mytext.txt'

If the file /home/dev/mytext.txt does not exist when encoding, the Encoder will produce
error: Error in accessing encoding key file.

When the Loader processes test_enc.php at runtime, it will find that decoding depends on
the contents of an external key file. As the expected path is relative, the Loader will append that
path to the location of the script being decoded. So in this example, if the encoded file is at
/var/www/html/test_enc.php, the Loader would attempt to read the key from
/var/www/html/xyz/dk.txt. When encoded with version 14 and run using Loader
14.4.0 and above, the Loader will also search for a relative key path in parent directories of the
script until it is found, i.e. /var/www/xyz/dk.txt, /var/xyz/dk.txt and
/xyz/dk.txt. If the path for a key file is absolute, the Loader will just attempt to read that
file.

If a key file exists but the contents do not match the encoding key then a runtime error will
occur indicating that a decoding problem has occurred.

Using this method for external keys means that the location of the decoding key file will be
included within the encoded file. Although convenient and ideal for many cases, this may make
it slightly less secure than the other two methods described next; PHP configuration (ini)
properties and using license properties (available with the Pro and Cerberus editions).

February 2025 ionCube Encoder 14 User Guide 54

EXTERNAL AND DYNAMIC KEYS

4.2.2 Using Configuration Properties With External Keys [--encoding-key ini:...]

For PHP configuration (php.ini) properties the format of the option is either

--encoding-key ini:<INI PROPERTY>="<INI STRING VALUE>"

or

--encoding-key ini:<INI_PROPERTY>=<FILE LOCATION>

In the above, the <INI PROPERTY> is the base name of the ini property. At runtime the
Loader will expect that name to be prefixed by ioncube.loader.key. The <INI STRING
VALUE> will give the encoding key as a string value whilst <FILE LOCATION> will give a
path to a file whose contents will be the encoding key. The double quotes (" ") indicate to the
Encoder that the value is to be used directly as the key rather than being interpreted as a file
name.

Unix: Use single quotes around the entire option value or escape double quotes with \ to ensure
that the quote is not interpreted by the shell.

Those values will also indicate the type of values that the Loader will expect to see when
decoding. So, if a string is provided as the encoding key then the Loader will expect the ini
property to have the same string as a decoding property. Similarly, if a file location is provided
as the encoding key then the Loader will expect the configuration property to have a file
location value.

Where the encoding key ini property can be set is detailed in section 4.2.3.

Instead of using the file system external key to encode our example test.php, suppose we
decide to specify that an ini property that will give the decoding key. To do that we would use:

$ ioncube_encoder test.php -o test_enc.php --encoding-key
'ini:myprop=/home/dev/mytext.txt'

This means that again the contents of the file /home/dev/mytext.txt will be used to
encode. However, at runtime, the Loader will look for the ini property
ioncube.loader.key.myprop. Suppose that property does exist in the main php.ini
file as follows:

; External key setting with file value

ioncube.loader.key.myprop = subdir/kf.txt

Then, to decode the test_enc.php file the Loader finds the property
ioncube.loader.key.myprop together with its value subdir/kf.txt. The Loader
will then use the contents of subdir/kf.txt as the decoding key.

Again, if the encoding key file does not exist then the Encoder will produce an error at encoding
time. Similarly, the Loader will produce an error if the ini property cannot be found or if its
file value does not exist. If the file does exist but has the incorrect contents (that is, not the same
as the encoding file) then a runtime error will be produced indicating that a decoding error has
occurred.

February 2025 ionCube Encoder 14 User Guide 55

EXTERNAL AND DYNAMIC KEYS

As ini properties separate from the encoded file itself it is possible to use a string value
directly as the encoding key. Going back to our example that would be done as follows:

$ ioncube_encoder test.php -o test_enc.php --encoding-key
'ini:myprop="encoding key phrase"'

Note that the encoding key is included in double-quotes (" ") to indicate that it is a string key
rather than a file path. The Encoder will use that string as the encoding key directly. At runtime
the Loader will look for the value of the ini property ioncube.loader.key.myprop. For
decoding to be successful the value of the key must be the same as that used when encoding. So
if we had the following set in the php.ini file then decoding would be successful and
test_enc.php would be executed:

; External key setting with string value

ioncube.loader.key.myprop = "encoding key phrase"

Using a string as the value is slightly less secure than using a file since there is one less step
required to obtain the key and, in addition, the php.ini file may be generally accessible. On
the other hand, using a string value means that no extra key file needs to be provided.

4.2.3 Where External Key ini Properties Can be Set

As well as being set in php.ini files, configuration properties for encoding keys can be set in
.htaccess files (when using Apache as the web server), .user.ini files (when PHP is run
in CGI mode) and even using ini_set() in a PHP file. In the latter case the PHP file itself be
encoded to depend upon the same external key that is set with ini_set() in its body.

4.2.4 Using License Properties With External Keys [--encoding-key lic:...]

The Pro and Cerberus editions of the ionCube PHP Encoder can produce license files which can
be used to limit the usage of an encoded application to a domain, IP address or, in the case of
Cerberus, MAC address. Properties, as key-value pairs, can also be set in a license. Further
details on license generation may be found in section 5.2.

License properties can be used with encoding keys and the format of the option is:

--encoding-key lic:<LIC PROPERTY>="<LIC STRING VALUE>"

or

--encoding-key lic:<LIC_PROPERTY>=<FILE LOCATION>

Those options are very similar to the case for the PHP configuration properties except that the
keys will be obtained from license properties rather than ini file properties. So the <LIC
PROPERTY> will be the license property that the Loader will need to find in the license when
decoding. The <LIC STRING VALUE> will be the encoding key as a simple string value
whilst the <FILE LOCATION> will give the path to a file whose contents will be used as the
encoding key.

As with PHP configuration properties, if a string is given as the encoding key then the Loader
will expect to find a simple string as the value of the license property but if a file path is given
as the encoding key then the Loader will expect to find a file path as the value of the license
property.

February 2025 ionCube Encoder 14 User Guide 56

EXTERNAL AND DYNAMIC KEYS

As an example of using properties of licenses with external keys, suppose we encode our
test.php file to depend on a license called mylic.txt. That license file can contain a
property whose value gives the decoding key. That can be done as follows:

$ ioncube_encoder test.php -o test_enc.php --encoding-key
'lic:licprop=/home/dev/mytext.txt' --with-license mylic.txt

The mylic.txt license file may be generated using the make_license program as follows:

$ make_license -o mylic.txt --property 'licprop=kprop.txt' --allowed-
server www.example.com

That will create a license restricted to the domain www.example.com and containing a
property called licprop that gives the location of the external decoding key, a file called
kprop.txt.

At runtime, apart from checking that the license is present and valid for the server, the Loader
will obtain the value of the licprop property of the license. The Loader will then get the
contents of kprop.txt and use that to produce the decoding key for test_enc.php. Again,
if either the license property or the file kprop.txt cannot be found then the Loader will
indicate that a decoding error has occurred.

As with configuration properties, a simple string may be used as the key instead of the contents
of a file. In that we case we would have the following:

$ ioncube_encoder test.php -o test_enc.php --encoding-key
'lic:licprop="secret prop value"' --with-license mylic.txt

The license property would have to have a string value to match:

$ make_license -o mylic.txt --property 'licprop="secret prop value"'
--allowed-server www.example.com

The method of using license properties for external keys has the advantage that the license file
itself is encrypted whereas an ini property may be in a readable, plain text configuration file.
Furthermore, the Loader will stop execution if the license file is not valid for the server on
which files are being run.

4.2.5 External Keys and Security

For string value external encoding keys (in the ini and license property cases), longer keys
should provide greater security. We recommend when using string value keys that the length is
16 or more characters. When using file contents we suggest that they contain at least 64
characters but not more than 256K.

4.2.6 Uniqueness of External Key Values

The license property used for an encoding key must have a unique value across your encoded
projects. You should not, for example, have an encoding key property with the name foo that
has one value in one license (e.g. "secret prop value 1") and a different value
("secret prop value 2") in another license. If you need to use different encoding key
values be sure to use different names for your encoding key properties, such as foo1 and
foo2.

February 2025 ionCube Encoder 14 User Guide 57

EXTERNAL AND DYNAMIC KEYS

4.2.7 Errors That May Occur When Encoding With External Keys

The ionCube Encoder may stop with the following errors:

• Cannot have more than one encoding-key argument
Only one --encoding-key option may be given to encode a file or directory.

• Error in accessing encoding key file [file name]
In this case the encoding key file cannot not be found.

• Cannot open encoding key file [file name]
The Encoder cannot read the specified file in this case.

• Error attempting to allocate [number] bytes when reading
encoding key file [file name]
This indicates that the encoding key file is too large to be read into memory
successfully.

• Error when reading encoding key file
This indicates some other error when reading the encoding key file.

• Unable to allocate memory for hash of encoding key
This indicates excessive memory use when generating a hash of a string or of a file
contents.

• Error hashing encoding key file [file name]
This indicates some other error when generating a hash.

• Error in hashing encoding key string [string]
This indicates an error during the hashing of an encoding string.

The Encoder will also give the warning --encoding-key option only applies
for PHP 5.3+ encoding if an encoding-key option is used with the Encoders for the
PHP 4 or PHP 5.0 source languages.

4.2.8 Errors That May Occur With External Keys at Runtime

If an external key cannot be found at runtime then the ionCube Loader will produce the error
The file [file name] could not be decoded as an encoding key was
not found.r

If an inconsistency due to an incorrect run time key is found in the byte code during execution,
the Loader will produce the error Unable to call protected script. The format of
these errors can be specified by the --dynamic-key-errors option to the Encoder that is
detailed in section 4.3.12.

Note that if an external key is not correct at runtime then unpredictable behaviour
may occur. Whilst the ionCube Loader tries to catch such errors in decoding
(producing the unable to call protected script error), in some
situations they may not be caught and this may cause PHP to fail.

February 2025 ionCube Encoder 14 User Guide 58

EXTERNAL AND DYNAMIC KEYS

4.3 Dynamic Keys

While the external key mechanism described above does provide an enhanced level of
protection, it should be noted that the key is still “static” in the sense that it is either a simple
string value or the contents of a file which must have the same contents as that used when
encoding. Moreover, the decoding key will be obtained at the start of decoding and will apply to
all the byte code in the file. Potentially, therefore, the key could be obtained without actually
running the encoded application.

With ionCube encoded files, functions are only decoded when they are first called in the
application. This “dynamic decoding” approach means that the decoded byte code only exists at
the last possible moment. The only exception to this is for closures, which are decoded at the
point that they are read from an encoded file.

In addition, Dynamic Keys takes the idea of dynamic decoding a significant step further. The
basis of this feature is that a decoding key can only be obtained by actually running the PHP
application, and will be the result of some internal computation.

Unlike external encoding keys, dynamic keys are specified as annotations within the source
code, and can be specified on a per function or method basis rather than for the entire file.
Functions are only decoded at the point that they are first called, and the dynamic key may be
obtained in one of the following ways:

• The contents of a file or URL that may be either local or remote. The file only has to
exist at the point the particular function is being first called and decoded.

• The value of a variable at the point the function is first called.

• The computed value of a different function at the point that the original function is
being called and decoded.

4.3.1 Function Annotations to Specify Dynamic Keys

Dynamic key specifiers must be added as single line PHP comments starting with // and
having a tag @ioncube.dynamickey. To illustrate, in the following example we use a
value obtained from a URL as the dynamic key.

// Using a URL to get the dynamic key.

// @ioncube.dynamickey https://www.example.com/secret?key=4 -> "encoding key

value"

function myfn($a)

{

 [Code body for myfn]

}

myfn($v); // myfn is decoded only when first called here

In the above, the Encoder will use the string value "encoding key value" to the right of
the arrow as the encoding key for the function myfn immediately below it. The encoding key
must always be a constant string value. The function called myfn will only be decoded by the
Loader when it is first called and that decoding will depend upon successfully getting the
response from https://www.example.com/secretkey?key=4. Decoding will then
only succeed if the response value matches that of the encoding key string, "encoding key
value". The arrow -> separates the runtime expression used to obtain the key and the
expected value as used at encoding time value. The encoding time value "encoding key

February 2025 ionCube Encoder 14 User Guide 59

EXTERNAL AND DYNAMIC KEYS

value" will be used as the encryption key used to encrypt the byte code of myfn(). An
encryption method may also be specified after the key, as illustrated in the next example,
however in this case no method was given and a default encryption method would be used.

In the following example the key is obtained from a PHP variable at runtime. This also shows
that instead of @ioncube.dynamickey the shorter form @ioncube.dk can be used as the
tag.

// Using the value of a variable as the dynamic key.

// @ioncube.dk $x -> "58" RANDOM

function myfn($a)

{

 [Code body for myfn]

}

$x = 53;

$x += 5;

myfn($v); // First call to myfn – successful decode depends on value of $x

In the example above, the decoding of myfn depends upon the value of the variable $x at the
point that myfn is called. The Loader will convert the value of $x to be a string and use that as
the decoding value. If $x does not exist or does not have a value equivalent to “58” then a
runtime error will occur. In this example we have used RANDOM as the encryption algorithm to
secure the byte code of myfn. That means the actual encryption method used will be selected
from a number of built-in encryption methods.

February 2025 ionCube Encoder 14 User Guide 60

EXTERNAL AND DYNAMIC KEYS

The value of function calls can also be used as the expression to be evaluated to produce the
decoding key, allowing for more sophisticated approaches as seen in the following example:

// Using the result of a function to get the dynamic key.

function concatfn($first,$second)

{

 $phrase = ucfirst($first) . ' ';

 $phrase .= ucfirst($second) . ' again!';

 return $phrase;

}

// @ioncube.dk concatfn("hello","world") -> "Hello World again!"

function myfn($a)

{

 [Code body for myfn]

}

// First call to myfn – decoding depends on evaluating

concatfn("hello","world")

myfn($v);

In the above, the Loader will call concatfn() with the string arguments "hello" and
"world". Doing so should evaluate to the string "Hello World again!" or a runtime
error will occur. Please note that the arguments to the function must be constant strings and it
must return a string value or one that can be converted to a string.

4.3.2 Rules for Expressions Used to Get the Decoding Key

There are the following restrictions on the expressions used to obtain the decoding key at
runtime:

• The result of the expression must be a string or convertible to a string, so an object,
array or resource cannot be the result of such an expression. Note that the Encoder
cannot check this itself as it cannot know to what type an expression will evaluate.

• Variable expressions must be scalar variables of the form $name. Variable variables
(such as $$x), array elements (such as $a["apple"]) or object expressions cannot
be used. Any variable given must be in scope at the point a function being decoded is
called.

• File expressions can be a full path on the system prefixed with file:// or an external
URL with the http, https or ftp transport types. e.g.
file:///var/www/html/app/favicon.ico
https://www.example.com/get-app-key.php

Notice that three / characters are used at the start of an absolute file path. Be aware also
that URLs should only be used if it is known that the systems on which the encoded
files will run have the PHP configuration value allow_url_fopen set to be on.

• For the contents of files and URLs, any starting white space (spaces, newlines, tabs) in
the contents will be ignored. So, suppose the response to requesting the URL
https://www.example.com/secretkey was " encoding key
value" then that would be trimmed to "encoding key value".

February 2025 ionCube Encoder 14 User Guide 61

EXTERNAL AND DYNAMIC KEYS

• For function expressions, the function used must be a user-defined one in the global
namespace and must return a string value (or a value that can be converted to a string).
Using an internal PHP function or operator will not work, although the Encoder cannot
detect such use. So the following would fail when the Loader attempted to decode the
function:

// Cannot use built-in PHP functions.

// @ioncube.dk strlen("my secret phrase") -> "16"

• User-defined functions used to obtain the key can use internal PHP functions and
methods, including the functions of the Loader API (see section 6). Other user-defined
functions and methods can also be used within the definition. So the following will be
fine:

function addon($str)

{

 return ' ' . lcfirst($str) . ' ';

}

function use_funcs($a, $b)

{

 // Get the properties in a Pro or Cerberus license.

 // The value of mprop should be "propv" for decoding to

 // work in this example.

 $licprops = ioncube_license_properties();

 $retval = str_repeat($a,2) . addon($b) . $licprops['mprop']['value'];

 return $retval;

}

// @ioncube.dk use_funcs("say ","Again") -> "say say again propv"

function myfn($arg) // ...

• Function expressions cannot be method calls or calls to variables that have function
variables. So for example, the following expressions would be disallowed by the
Encoder:

// Attempt to use a static method will be disallowed.

// @ioncube.dk MyClass::StaticMethod("a") -> "my static res"

// Attempt to use an instance method will be disallowed.

// @ioncube.dk $obj->mymethod("arg1","arg2") -> "obj res"

// Cannot use variables for function calls.

// @ioncube.dk $f("pear") -> "apples and pears"

• Any variables passed to a function used to get a decoding key must all be string
constants, not containing any variables. So the following would be disallowed by the
Encoder:

// Attempt to use variables as arguments will be disallowed.

// @ioncube.dk decodefn($v) -> "my string"

// Cannot use function calls in arguments.

// @ioncube.dk myfn(ucfirst("my str")) -> "res"

February 2025 ionCube Encoder 14 User Guide 62

EXTERNAL AND DYNAMIC KEYS

4.3.3 Available Encryption Methods

The following encryption methods may be used when encrypting the compiled byte code of a
function. When included at the end of a dynamic key annotation they will be recognised in a
case-insensitive way. So "random", "RANDOM" and "Random" will all be recognised as the
random method.

• Random - A random method is chosen from a set of strong encryption methods when
encoding.

• Basic - This is a non-cryptographic byte code obfuscation method that may be used if
more application speed is required.

If neither Random nor Basic is stipulated then a default internal encryption algorithm will be
used. The default encryption method will not vary between encodings, unlike Random. This
may give slightly better performance than a random choice.

4.3.4 Dynamic Keys for Whole Scripts

We have seen above how dynamic keys can be used to encrypt the byte code of functions.
Dynamic keys can also be used for entire scripts. A dynamic key specifier will apply to the
entire script if it occurs before all other key specifiers in the script and, in addition, another
dynamic key specifier occurs before the first function. It must occur also in the body of the
script and not in any class. Below is an example:

<?php

// The dynamic key specifier immediately below will apply

// to the script as there is another specifier before

// the first function.

// @ioncube.dk https://www.example.com/special -> "ghjvbbn444646"

$x = 'original text';

$x .= ' here';

// First function in the script.

// The dynamic key specifier below applies to g.

//@ioncube.dk $x -> "original text here"

function g($a,$b) // ...

4.3.5 Dynamic Keys for Primary Scripts

In a dynamic key specifier for a script, any variables or functions in the specification must be
defined by the time the script is accessed. This means that unless a prepend script is in place to
provide the necessary variables or functions, a primary script (the one first called in a request)
can only be protected by a file or URL dynamic key as there cannot be any user-defined
variables or functions defined at that point.

4.3.6 Dynamic Keys and Closures

Dynamic keys may be applied to closures, although with some differences. Closures are
decoded at the time that the encoded file is read rather than at the point of the first call. This
means that any variable or function used in the dynamic key specifier for the closure must exist
at the point that the file is read rather than when the closure is first called. Due to this restriction
the Encoder will produce a warning if the dynamic key specifier for a closure is a variable.

February 2025 ionCube Encoder 14 User Guide 63

EXTERNAL AND DYNAMIC KEYS

4.3.7 Chains of Functions Having Dynamic Keys

If a dynamic key specifier depends on the result of a function (fn, say) then that function fn()
may itself have a dynamic key as can be seen in the following example:

function g($v, $w)

{

 $x = $v . ' yes';

 $x .= ' ' . str_repeat($w, 2);

 $x .= ' ' . substr($w, 0, -2);

 return $x;

}

// @ioncube.dk g("'say'","again") -> "'say' yes againagain aga"

function fn($p)

{

 return('HEY ' . $p);

}

// Dynamic key specifier has a call to function fn

// which itself has a dynamic key specifier.

// @ioncube.dynamickey fn("world") -> "HEY world" RANDOM

function first($v)

{ // …

}

// Below the call to first will require fn to be

// decoded before first's key can be obtained.

// Decoding fn will require a call to g.

first($vn);

Care should be taken when using such chains. In particular, circular chains of key specifiers
must be avoided, e.g. where a function f() has a key specifier that requires g() to be called,
and g() has a key specifier that uses f().

4.3.8 Performance Versus Security When Using Dynamic Keys

The significant benefits of dynamic keys to secure functions and methods should be balanced
against a possible loss of performance as true encryption/decryption is relatively slow by design.
For a function that has been encoded with a dynamic key, the Loader must first either read the
contents of a file, access a URL, examine the value of a variable, or use the result of a function
call. The Loader will then decrypt the byte code of the function using the key and the
appropriate decryption method. Full encryption and decryption are computationally intensive
procedures, and all together, these steps inevitably add some overhead to the first call to a
function.

We would recommend that the use of dynamic keys with true encryption be kept for certain
central functions or methods upon which the application as a whole depends. If those functions
cannot be decoded then the rest of the application will not run and the remainder of the
application will not be decoded, even if the remainder of the application is not protected by
dynamic keys. One possible strategy would be to secure the files of an application with the
external keys described in the Section External Keys above and to add dynamic key protection
to a few key functions or methods within each file. In addition, the Basic encryption method can
be used with dynamic keys to improve performance as it is not a true encryption method and
therefore faster.

February 2025 ionCube Encoder 14 User Guide 64

EXTERNAL AND DYNAMIC KEYS

4.3.9 Using the Reflection API with Dynamic Decoding [--allow-reflection-all,
--allow-reflection]

Certain methods of PHP's reflection API that may act on functions or methods require the byte
code of the function or method to exist in order to operate. Thus simply using the methods of
the reflection API with a function that had not yet been decoded would not work with dynamic
decoding. On the other hand, if the ionCube Loader decoded functions automatically when
Reflection API methods were called, this would provide a loophole allowing the decoding of
functions to be forced without them being called during normal execution.

To get round this issue, there are two options to the Encoder that allow the reflection API to be
used with user-defined functions and methods. These are --allow-reflection-all and
--allow-reflection that allow the following reflection API methods to be applied to
encoded functions:

• getDefaultValue()

• getDocComment()

• getEndLine()

• getFileName()

• getStartLine()

• getStaticVariables()

• isDefaultValueAvailable()

• __toString()

Other reflection API methods are not affected by the --allow-reflection-all and
--allow-reflection options.

The --allow-reflection-all option allows the reflection API to be applied to any
function or method within encoded files. Thus if this option is used, the Loader will decode any
function or method to which the reflection API was being applied. If there is an --allow-
reflection option then that will override --allow-reflection-all as --allow-
reflection is more specific and therefore safer. The Encoder will produce a warning to the
effect that --allow-reflection overrides --allow-reflection-all.

The --allow-reflection option allows the reflection API to be applied to functions or
methods matching a specific pattern. There may be multiple --allow-reflection options
when encoding. The possible specifier patterns that can be used with --allow-reflection
are as follows:

• <function name>
The name of a specific function (not a method). For example,
--allow-reflection myfn
will allow reflection to be applied to the myfn() function.

• <class name>::<method name>
The name of a specific method in a specific class. For example,
--allow-reflection MyClass::foo
will allow the reflection API to be applied to the method foo() of the class MyClass.

February 2025 ionCube Encoder 14 User Guide 65

EXTERNAL AND DYNAMIC KEYS

• <class name>::*
All methods within a specific class. For example,
--allow-reflection MyClass::*
will allow the reflection API to be applied to all the methods of the class MyClass.

• <namespace>*
All functions and methods within the given namespace. For example,
--allow-reflection Lang\Translate*
will allow every method and function within the Lang\Translate namespace to
have the reflection API applied to it.

If a function matches a pattern then the Loader will decode that function and call the reflection
API method being applied. If a function does not match the pattern then the Loader will not
decode the function and a runtime error will occur.

Multiple --allow-reflection options can be used. For example, we could have the
following when encoding:

$ ioncube_encoder -83 test.php -o test_enc.php --allow-reflection
MyClass:* --allow-reflection bar

which means that the reflection API can be applied to all methods of MyClass and also to the
function bar().

Note that no restriction is applied to the application of the reflection API upon a function after it
has been first called, as the function body will have already been decoded.

4.3.10 Errors & Warnings Related to Dynamic Keys Produced by the Encoder

The Encoder may produce the following errors and warnings in relation to dynamic keys:

• Warning: Invalid ioncube declaration at [character number]
in [file name] at line [line number]
This means that a comment line has started with @ioncube but is not followed by
.dynamickey or .dk. In this case the line is ignored.

• Warning: Variable dynamic decoding key given for closure
The variable may not exist at the time the closure is decoded.
Closures are decoded eagerly when a file is read rather than when they are first called.
This means that it may not make sense for a closure to have a dynamic key specifier as
the variable may not have been set at that point.

• Warning: Orphan dynamic key specifier in file [file name]
This means that there is a dynamic key specifier but no function occurs after it, thus the
key specifier cannot be bound to any function in the file.

• Error: Invalid dynamic key specifier, [specifier string],
in [file name] at line [line number]
This means @ioncube.dynamickey or @ioncube.dk has been seen but the rest
of the dynamic key specifier does not make sense to the Encoder. The Encoder will exit
if such an error occurs.

February 2025 ionCube Encoder 14 User Guide 66

EXTERNAL AND DYNAMIC KEYS

• Warning: Option --allow-reflection-all ignored due to
earlier --allow-reflection option
and
Warning: Option --allow-reflection-all overridden by
--allow-reflection option
These two warnings indicate that the --allow-reflection option takes
precedence over the --allow-reflection-all option.

• Warning: --allow-reflection-all option only applies for PHP
5.3+ encoding
and
Warning: --allow-reflection option only applies for PHP
5.3+ encoding
These two warnings indicate that the --allow-reflection options cannot be used
with ioncube_encoder and ioncube_encoder5.

4.3.11 Errors Related to Dynamic Keys That May Occur At Runtime

When dynamically decoding functions and methods, the ionCube Loader may produce an
Unable to call protected function or Unable to call protected
script error if a fault in the byte code occurs after dynamic decoding. The exact format of
the error will depend on whether the --dynamic-key-errors option has been used. By
default the Loader will give a message similar to standard PHP errors, including the function
name, file name and line number.

Note that if a dynamic key is incorrect at runtime then unpredictable
behaviour may occur. Whilst the ionCube Loader tries to catch such errors
in decoding, in some situations they may not be caught and this may cause
PHP to fail.

4.3.12 Controlling How Dynamic Decoding Errors Are Presented [--dynamic-key-errors]

The way that dynamic decoding errors are presented can be controlled by encoding with the
--dynamic-key-errors option, which takes one of the following arguments:

• simple
Error messages will just say Unable to call protected function myfn
if myfn is the function being dynamically decoded. This option will give minimal
information to anyone who might be trying to reverse engineer encoded files.

• normal
This is similar to standard PHP error messages and gives the file name and line number,
as well as the function name, in the message. This is the default.

• backtrace
This gives a back trace of the execution, including functions executed to obtain the
current dynamic key. This should be used when debugging dynamic key problems. This
option also controls the format of errors produced for external keys where the external
key was found but an incorrect value caused problems in the resulting byte code.

4.3.13 Getting Dynamic Key Information With Verbose [--verbose]

The dynamic key information discovered in a source file by the Encoder will be output when the
--verbose option is used.

February 2025 ionCube Encoder 14 User Guide 67

LICENSE FILE GENERATION (Pro and Cerberus Editions)

5 LICENSE FILE GENERATION (Pro and Cerberus Editions)

5.1 Introduction to License Files

The Pro and Cerberus editions of the ionCube Encoder support various features for license file
creation. Using the included license generator program (make_license), various types of
restrictions can be setup, with these either enforced automatically by the ionCube Loader at
runtime, or in your own scripts using functions in the Loader API. With the Windows edition a
license generator for Linux is also included, allowing license files to be created from a Linux
server; this is located in a folder called Linux within the program installation folder.

Encoded files can be restricted to run only in the presence of a license file, properties can be set
in the license file that must match properties set in the encoded files (useful to prevent use of an
incorrect license file), and license files can be used to restrict encoded files to a particular
machine. Licenses can also be set to expire at some point in the future.

Benefits of License Files

Using license files is an alternative to setting restrictions in the encoded files themselves. One
benefit of this is that a project will not need to be encoded for each installation requiring
different restrictions. Producing software updates to existing customers is also more
straightforward as a single encoded update can be provided, whereas a unique one would be
required for each user if the files themselves contained the restrictions.

Server Restrictions

License file server restrictions can be supplied to the license generator in one of two ways. If the
details of the server to be licensed are known, such as IP address, then these can be used
explicitly. Often, however, details are unknown, and the goal is simply to restrict to a server
without knowing the actual parameters. To support this, a Loader API function can be used to
generate server data containing information about the target server, and after being received via
a method such as email or a web form, the data can be passed to the license generator to create a
license file for that server. This can be ideal for automating license generation based on
information supplied from the installed PHP scripts during a licensing procedure. The server
data can also be decoded by the license generator into an easily parsed format, allowing a script
to pick what server details are licensed.

Custom Properties

Custom key/value data called properties can also be added to license files and read via the
Loader API at runtime. This feature might be used to customise product behaviour based on
information read from the license file.

License File Contents

A license file consists of a header in plain text followed by an encrypted data block. Any
properties or restrictions in the license data can be optionally exposed so that they also appear as
plain text, e.g. the expiry time. Additional text can be added to the header if desired. Finally,
license files are protected by signatures to prevent removal or changing of the plain text.

February 2025 ionCube Encoder 14 User Guide 68

LICENSE FILE GENERATION (Pro and Cerberus Editions)

Locating License Files

Each encoded file contains the expected name or path to its associated license file. Typically this
will be just the filename, e.g. license.txt. When accessing a license protected encoded file,
the Loader first looks for the license file path relative to the same directory as the encoded
script. If not found, parent directories will be searched until the license file is found or until the
directory root is reached. This allows for easy installation and management of license files for
both shared and dedicated servers.

February 2025 ionCube Encoder 14 User Guide 69

LICENSE FILE GENERATION (Pro and Cerberus Editions)

5.2 Creating License Files

5.2.1 Command Line Usage

The general form for running the command line license generation tool is

make_license --passphrase <key> [options] -o <output-path>

When encoding files that require a license, it is also necessary to specify a passphrase. The
passphrase is part of an encryption key and should agree with the passphrase specified when
generating the corresponding license. It is advisable that passphrases are different for each
project/product to prevent a license file for one project being used with another.

Please note that a license file is only compatible with encoded files from the related instance of
the Encoder software. This ensures that even if another ionCube user generates a license file
with the same passphrase as you have used for your files, their license file cannot be used with
your encoded files.

The output path is the path to where the new license file will be saved.

Along with the passphrase and output path, various options can be used for setting restrictions
and license properties. All available options are described below.

5.2.2 Help [--help, -h]

Show a summary of program options.

5.2.3 Program version [--version, -v]

Report the program version.

5.2.4 Output path [--output, -o]

Specify the output path for the license file.

Example:

-o product-license.txt

5.2.5 Using Passphrases to Differentiate Products [--passphrase]

As mentioned previously, it is recommended that a unique passphrase be used for each product
or product variant that is encoded. This ensures that a license for one product will not unlock a
second product. As an additional layer of security, a license created with one Encoder
installation cannot unlock files encoded with a different Encoder installation, even if the
passphrases were the same. The option --passphrase should be used to specify the
passphrase.

5.2.6 Setting License Restrictions [--allowed-server, --expose-server-
restrictions]

The --allowed-server option allows explicit setting of license file restrictions when target
server details such as domain name or IP address are already known. The specification syntax is
the same as for the similar option of the Encoder. Please see section 3.6.3 above for details of
the syntax, examples and noteworthy points. This option may be used more than once if multiple
restrictions are required.

February 2025 ionCube Encoder 14 User Guide 70

LICENSE FILE GENERATION (Pro and Cerberus Editions)

Server restrictions are stored in the encoded part of the license file, but can also be exposed in
the header block by using the --expose-server-restrictions.

Note: There is a limit of 250 server restrictions for a license file.

5.2.7 Exclude checking of interface aliases [--ignore-interface-aliases]

Ignore interface aliases when checking IP restrictions, e.g. eth0:1

5.2.8 Setting License Restrictions from Server Data [--use-server-file]

An alternative to setting license restrictions explicitly is to use server data from the target server
that was collected by the application being licensed. Server data is obtained by calling the
Loader API function ioncube_server_data(), which would then be passed back to the
license provider be used for licensing. See section 6.2.3 for more details on this API function.

Once server data has been received, such as in an email or through a web form, and then written
to a temporary file, the --use-server-file option can be used as follows

--use-server-file <path>

where path refers to the location of the server data file. As the machine may contain multiple
network adaptors, it is also necessary to use either the option --select-server-adapter
or --select-adapters to select which details to license to. These options are described
in the next section.

5.2.9 Selecting Adapters [--select-server-adapter, --select-adapters]

Server data generated using the API function ioncube_server_data()includes all
network interfaces. In addition, if the API function is called from a script via the web server,
both the domain name and server IP address for the request will be stored if that information
was available. This is the usual case, and it will generally be desirable to license to the
information associated with the web request as this would usually be the same when accessing
the main parts of the licensed product. In other cases, licensing to one or more adapters
explicitly may be preferred. Both of these cases are catered for.

To license to the server information associated with the web request that called the server data
API function, use the option

--select-server-adapter

Provided that the server data was requested from a page under the same domain as the
application to be licensed, errors from mistaken domain names or IP addresses should not arise.
When using this option, if no IP address or domain name was reported the make_license
program will exit with code 2 to allow handling of this case.

To license one or more specific adapters, the option

--select-adapters <adapter list>

can be used to select the adapters. Here adapter list is either a comma separated list of numbers
that refer to the position of the adapter in the server data file, or the * character. The first adapter
is identified as 1, and using * selects all adapters to be licensed.

February 2025 ionCube Encoder 14 User Guide 71

LICENSE FILE GENERATION (Pro and Cerberus Editions)

5.2.10 License Expiry [--expire-in, --expire-on, --expose-expiry]

These options support the creation of time expiring licenses. Expiry information is stored in the
encoded part of the license file, but can also be exposed in the header block by using the
--expose-expiry option.

These options take arguments of the same format as the options in sections 3.6.1 and 3.6.2 for
setting expiry time on files, and examples are included in those sections.

5.2.11 License Properties [--property, --properties, --expose-property]

Custom key/value pair property data can be stored in a license file in the same way that
properties can be stored in encoded files. Use the option syntax

--property "<name>[=<value>]"

to specify a property. Multiple properties can be specified in this way. See section 3.12.1 for
more details on the supported syntax. --properties is an alias for --property, and both
options can be used to specify one or more properties. Properties can also be exposed as plain
text in the license header block by using the option

--expose-property <name>

5.2.12 License Property Checking [--enforce-property]

Properties may be included in a license either as a convenient mechanism for securely accessing
custom data from an encoded script, or in order to lock a license to an encoded file. If a property
is to be used for the latter purpose, the following option should be used

--enforce-property <name>

By default, encoded files secured by such a license must have a property with a matching key
and value. If the property is not found then the Loader will exit before execution of the script
begins. See section 3.7.3 for details on how to customise this behaviour.

5.2.13 Customising the Header Block [--header-line]

The text that occurs before the encrypted license data is called the header block. The header
block is protected from tampering, so it is important that this text is not edited after the license
has been generated otherwise the license will become corrupted. The header block content is
determined by those properties which have been exposed, whether there is an exposed expiry
date, and any custom header lines. To add custom lines to the header block, for each line use the
command line option

--header-line <text>

5.2.14 Viewing Server Data Files [--decode-server-file]

Once saved to a file, the contents of data generated by ioncube_server_data() can be
viewed with the make_license option

--decode-server-file <path>

February 2025 ionCube Encoder 14 User Guide 72

LICENSE FILE GENERATION (Pro and Cerberus Editions)

where path is the path to a file containing server data. The domain name and server IP address
that were reported by the web server for the request calling the API function are output first,
followed by the name, IP address, and MAC address of each adapter installed on the server. To
be both human readable and easily parsed, each line has a field name and value separated by a :
character. If there was no domain name or IP address stored for the request, the field value will
be the token none.

February 2025 ionCube Encoder 14 User Guide 73

LICENSE FILE GENERATION (Pro and Cerberus Editions)

5.2.15 Decoding a license [--decode-license, --decode-format]

Decodes a license file to human or machine readable form. Available formats are legacy,
json, json2, compact

The legacy format is a human readable form, while json and json2 are JSON. The two JSON
formats may be combined together. JSON output is multiline, but if compact is specified, the
JSON will be a single line. The formats produce the same output for properties and domain
restrictions, but differ for IP and MAC addresses.

Example:

Given a license file locked to a domain with a single IP address and a range of IP addresses, all
at the same MAC address, created as follows:

make_license --pass mypass -o lic.txt \
--allowed-server domain.com@1.2.3.4,10.11.12.13-

16{00:11:22:33:44:55}

The possible decoded JSON outputs are:

--decode-format json

{
 "ignore_interface_aliases" : false,
 "restrictions" :
 [
 {
 "domains" : ["domain.com"],
 "ip_rules" :
 [

 {
 "ip" : 16909060,
 "mask" : 4294967295,
 "numbits" : 32,
 "type" : "ip"
 },
 {
 "from" : 168496141,
 "to" : 168496144,
 "type" : "range"
 }
],
 "mac_addrs" :
 [
 [0, 17, 34, 51, 68, 85]
]
 }
]
}

February 2025 ionCube Encoder 14 User Guide 74

LICENSE FILE GENERATION (Pro and Cerberus Editions)

--decode-format json2

{
 "ignore_interface_aliases" : false,
 "restrictions" :
 [
 {
 "domains" : ["domain.com"],
 "ip_rules" : ["1.2.3.4", "10.11.12.13-16"],
 "mac_addrs" : ["00:11:22:33:44:55"]
 }
]
}

--decode-format json,json2

{
 "ignore_interface_aliases" : false,
 "restrictions" :
 [
 {
 "domains" : ["domain.com"],
 "ip_rules" :
 [
 {
 "raw" :
 {
 "ip" : 16909060,
 "mask" : 4294967295,
 "numbits" : 32,
 "type" : "ip"
 },
 "text" : "1.2.3.4"
 },
 {
 "raw" :
 {
 "from" : 168496141,
 "to" : 168496144,
 "type" : "range"
 },
 "text" : "10.11.12.13-16"
 }
],
 "mac_addrs" :
 [
 {
 "raw" : [0, 17, 34, 51, 68, 85],
 "text" : "00:11:22:33:44:55"
 }
]
 }
]
}

As can be seen, the json decode format is oriented to program processing, whereas the json2
format produces text that is suited to display purposes.

February 2025 ionCube Encoder 14 User Guide 75

LICENSE FILE GENERATION (Pro and Cerberus Editions)

5.2.16 Legacy compatibility [--compat]

Prior to version 11, the unquoted property values true and false were stored and returned by
the Loader API function ioncube_license_properties() as strings. From version 11,
these are stored and returned as booleans. To obtain the previous parsing behaviour when adding
properties to a license, add the option --compat no-bool-props at the start of the
make_license command line, before any properties are specified.

5.2.17 Troubleshooting License Problems

If an encoded script that requires a license fails, the particular error message displayed can give
a clue as to the cause of the issue. For security reasons the error messages are general rather than
specific.

If the license is reported to be invalid then a license property set in the license has not been
matched in the encoded file. If the license is corrupt then either the contents of the license file
have been altered, or the passphrase in the encoded file does not match the passphrase used to
generate the license file. If the license is not valid for this server then a server restriction in the
license has not been met.

If it is necessary to determine the contents of a license file the Loader API can be used. Encode a
script with the options

--with-license license.txt --license-check auto

and use the Loader API from the script to output the server restrictions, expiry date, and any
properties contained in the license.

February 2025 ionCube Encoder 14 User Guide 76

LOADER API

6 LOADER API

The ionCube Loader contains an API providing various functions and constants that may be
useful in PHP scripts. Most functions return results dependent on whether or not the calling
script was encoded.

6.1 File Information and Execution

6.1.1 Checking for an Encoded File [ioncube_file_is_encoded()]

This function returns TRUE if the file containing the function call is encoded and FALSE
otherwise.

6.1.2 General Encoded File Information [ioncube_file_info()]

This function returns FALSE if the file is not encoded. Otherwise it returns an associative array.
The contents of the array are as follows:

Key Value

FILE_EXPIRY Either the file expiry time, or the license expiry time if a license file is
present. The time is an integer in Unix timestamp format: the number of
seconds elapsed since midnight (00:00:00), January 1, 1970.

ENCODING_TIME Unix timestamp representing the time the file was encoded.

DEMO TRUE if the file was encoded with an evaluation Encoder, otherwise
FALSE.

6.1.3 Retrieving Properties Stored in an Encoded File [ioncube_file_properties()]

This function returns an associative array consisting of file properties that were added to the
encoded file with the Encoder --property or --properties options. Only properties
defined in the calling script are returned.

6.1.4 Retrieving the Loader String Version [ioncube_loader_version()]

This function returns the Loader version as a string.

6.1.5 Retrieving the Loader Integer Version [ioncube_loader_iversion()]

This function returns the Loader version as an integer format, e.g. 120002 for version 12.0.2.
Note: Prior that prior to PHP 8, the Loader returned this as a string, e.g. "120002".
From PHP 8, an integer type is returned.

February 2025 ionCube Encoder 14 User Guide 77

LOADER API

6.2 License and Server Information

6.2.1 Retrieving Properties Stored in a License [ioncube_license_properties()]

This function returns an associative array consisting of license properties. Properties are added
to a license by specifying the --property command line option to the make_license
program. Each value in the associative array retrieved by this API function is itself an array with
two values: the license property value itself, and a boolean value to indicate whether the
property is enforced.

Recall that an enforced property is one that the Loader will attempt to match with an encoded
file property if the --license-check auto option is passed to the Encoder on the
command line.

The return value of this function is FALSE if the calling file is not encoded or has no license
file.

6.2.2 Retrieving the List of Permissioned Servers [ioncube_licensed_servers()]

This function returns an array of server restriction specifications. These are the same strings
specified on the command line when the license was created.

6.2.3 Creating a Server Data Block [ioncube_server_data()]

When generating a license for an end user it will usually be necessary to retrieve information
about the target server. This API function generates a server data block containing information
about the network adapters installed on the server and the server’s domain name. The data block
can then be used in conjunction with the make_license program to generate a license
restricted to the user’s domain and server.

This function can be called from either an encoded or non-encoded script.

February 2025 ionCube Encoder 14 User Guide 78

LOADER API

6.3 License Validation

6.3.1 Validating License Properties [ioncube_check_license_properties()]

This API function returns TRUE if all enforced license properties are matched in the encoded
file. Otherwise an array is returned consisting of all unmatched enforced properties.

6.3.2 Validating Licensed Servers [ioncube_license_matches_server()]

This function returns FALSE if the calling file is encoded, requires a license, and if the license
has a server restriction that is not met by the current server. In all other cases the function
returns TRUE.

Note that in the case that an encoded script requires a license but no license could be found, the
Loader will prevent execution of the script. The case of a missing license therefore cannot occur
when calling the ioncube_license_matches_server() API function.

6.3.3 Validating License Expiry [ioncube_license_has_expired()]

This function returns TRUE if the calling file is encoded and has a license with an expiry time
that has passed. In all other cases the function returns FALSE.

February 2025 ionCube Encoder 14 User Guide 79

LOADER API

6.4 Encrypted File Support

6.4.1 Reading Encrypted Files [ioncube_read_file()]

mixed ioncube_read_file(string path
[,bool &was_encrypted [,string passphrase]]])

This API function can be used to read files encrypted by the Encoder with the --encrypt
command-line option. If a file is read successfully the contents are returned as a binary-safe
string. An integer is returned in the case of an error condition, which can be tested for by calling
the PHP function is_int(). The error codes are described in section 6.5 below.

Both plain text and encrypted files can be read by this function, allowing the function to be used
in cases where it is not known whether a file will be encrypted. For example, a template engine
could be designed that would accept both encrypted and non-encrypted template files. If it is
necessary to know whether the file read was encrypted, the second optional argument (passed by
reference) can be examined.

If an encrypted file has been written with a custom passphrase (i.e. a non-empty passphrase
argument was passed to the ioncube_write_file() API function), the same passphrase
should be specified as the third argument.

Files encrypted by one Encoder can only be read by PHP scripts encoded by the same Encoder,
and encrypted files cannot be read by non-encoded scripts.

6.4.2 Writing Encrypted Files [ioncube_write_file()]

integer ioncube_write_file(string path, string content
[,bool encrypt [,string passphrase]]])

Encoded PHP scripts can write encrypted files using this API function. Files written in this way
can be read with the ioncube_read_file() function.

The first argument is the path of the output file.

The second argument is a binary-safe string containing the content to encrypt.

The optional third argument can be set to FALSE to write a plain text file.

The optional fourth argument can be used to specify a custom passphrase to replace the default
installation-specific passphrase. If a custom passphrase is used then files encrypted with one
installation can be read by a different installation’s encoded files, if the correct custom
passphrase is passed to the ioncube_read_file() function.

February 2025 ionCube Encoder 14 User Guide 80

LOADER API

6.5 Error codes

The following table lists the error codes that can be returned from the API functions detailed in
this section.

Code Meaning

0 The file was successfully written.

1 The file could not be opened.

2 The file is corrupt.

3 An updated Loader should be installed to read the file.

4 An error occurred while reading the source file.

5 An error occurred while writing an encrypted file.

6 An error occurred while encrypting the file contents.

7 An encrypted file cannot be read by an non-encoded PHP script.

8 The wrong passphrase was specified, or the wrong Encoder installation
was used to encrypt the file.

9 ioncube_write_file() must be called from an encoded file to
produce an encrypted file without a custom passphrase.

February 2025 ionCube Encoder 14 User Guide 81

ERROR REPORTING

7 ERROR REPORTING

The Encoder reports syntax errors in the format of

filename:line number:message

This offers possible integration with emacs and direct access to the point of error in source files.
For example, given a directory of PHP files called myproject, running the emacs compile
command and specifying the compiler as

ioncube_encoder -S myproject

would syntax check all PHP files and report errors in a buffer. With the default emacs key
bindings, simply hitting ctrl-X would visit each file reported as containing an error and place
the cursor at the line containing the error.

February 2025 ionCube Encoder 14 User Guide 82

TROUBLESHOOTING

8 TROUBLESHOOTING

8.1 Unable to Start the Encoder

8.1.1 On Unix (Linux, FreeBSD, MacOS)

Error: Command not found

On Unix, an error similar to

$ ioncube_encoder

bash: ioncube_encoder: command not found

would most often be because the directory where the Encoder is installed is not listed in the
shell PATH variable. It is recommended to use either a relative or absolute path to the Encoder
rather than adding the Encoder directory to the PATH environment variable as this may create
product license related problems on some systems.

Examples:

Run from the current directory

./ioncube_encoder

Run the Encoder installed in /usr/local/ioncube

/usr/local/ioncube/ioncube_encoder

Error: No such file or directory

An error of “No such file or directory”, even when the Encoder is launched with a correct
absolute or relative path, suggests that the target platform may be 64 bit and that the operating
system cannot execute the program. The Encoder will run without any problem on 64 bit
systems, but as it is a 32 bit compiled program, 32 bit system libraries must be installed on the
machine.

8.1.2 Using a 64 bit system

The ionCube Encoder software is a 32 bit compiled program, and can be used on 64 bit systems
provided that 32 bit support is available in the operating system. Most often it is, however if
there is a problem launching the software, simply installing the system 32 bit libraries should
resolve. For popular Linux distributions, only a single package need be installed.

8.1.3 On Windows

On Windows, you can edit the PATH environment variable for the logged in user by going to the
control panel, selecting the System item and clicking on the Environment tab.

February 2025 ionCube Encoder 14 User Guide 83

LOADER INSTALLATION

9 LOADER INSTALLATION

The ionCube Loader is an engine extension to PHP that performs processing and execution of
encoded files, as well as other important operations such as license validation. If a Loader is not
pre-installed on a target system, a Loader Wizard PHP script is available to indicate which
Loader is required, where to download it from our website, and also what installation options
are available. The Loader Wizard is available at https://www.ioncube.com/lw/

There are two possible installation methods for the Loader, and the following sections give some
specific details about this.

9.1 Loader Naming

Loaders are named with the following conventions, dependent on the operating system and
whether or not the PHP build has thread safety enabled.

Operating System Thread Safety
Enabled

Loader Name

Unix

(Linux, FreeBSD
etc.)

No ioncube_loader_<os>_<PHP version>.so

e.g. ioncube_loader_lin_8.3.so

Unix

(Linux, FreeBSD
etc.)

Yes ioncube_loader_<os>_<PHP version>_ts.so

e.g. ioncube_loader_fre_8.3_ts.so

Windows Yes / No ioncube_loader_win_<PHP version>.dll

e.g. ioncube_loader_win_8.3.dll

In the table above, <os> is the first 3 letters of the operating system, e.g. lin for Linux, fre
for FreeBSD etc., and <PHP version> are the first two numbers from the PHP version.
Different Loader packages are available for various architectures, i.e. dependent on whether a
platform is 32 or 64 bit and the processor type, but note that Loader naming is independent of
architecture.

February 2025 ionCube Encoder 14 User Guide 84

https://www.ioncube.com/lw/

LOADER INSTALLATION

9.2 Installation in a php.ini File

The recommended method for installation is via a php.ini file, requiring the addition of one
line to reference the location of the Loader. Example lines to add are shown below, where we
will assume that the Loader is located in /usr/local/ioncube on Unix and C:/PHP/ext
on Windows, but this need not be the case. Our example also assumes PHP 8.3 except where
noted.

On Linux with thread safety disabled (PHP 8.3)

zend_extension = /usr/local/ioncube/ioncube_loader_lin_8.3.so

On Linux with thread safety enabled (PHP 8.3)

zend_extension = /usr/local/ioncube/ioncube_loader_lin_8.3_ts.so

On Linux with thread safety enabled (PHP 5.2)

zend_extension_ts = /usr/local/ioncube/ioncube_loader_lin_5.2.so

Note: Prior to PHP 5.3, zend_extension_ts should be used if PHP has thread safety
enabled.

On Windows with thread safety disabled or enabled (PHP 8.3)

zend_extension = "c:/PHP/ext/ioncube_loader_win_8.3.dll"

Following any change to the php.ini file, the web server software should be restarted unless PHP
is being used as CGI, where a fresh PHP process is launched to handle each new request.

February 2025 ionCube Encoder 14 User Guide 85

	CONTACTS AND LINKS
	CONTENTS
	1 INTRODUCTION
	1.1 Encoder Outline
	1.2 Using Encoded Files / the ionCube Loader
	1.3 User Guide Notation
	1.3.1 Command Examples
	1.3.2 Hints and Tips

	1.4 The Supplied Software
	1.4.1 Software Versions
	1.4.2 Running the Software
	1.4.3 Using on 64-bit Systems
	1.4.4 References to Unix
	1.4.5 Encoder PHP Language Coverage

	2 GETTING STARTED
	2.1 PHP Compatibility of Encoded Files
	2.2 Running the Encoder
	2.3 Licensing the Encoder using Command Line
	2.3.1 Automatic Licensing [--activate] (recommended)
	2.3.2 Manual Licensing [--gen-license-request]

	2.4 Licensing the Encoder using the GUI
	2.4.1 With an Active Internet Connection (recommended)
	2.4.2 Via Email

	2.5 Transferring a License or Reinstalling a Machine
	2.5.1 Deactivating a License on Windows
	2.5.2 Automatic Method [--deactivate] (recommended)
	2.5.3 Manual Method [--gen-revoke-request]

	2.6 Command Line Basics
	2.6.1 Command Line Format
	2.6.2 Passing Command Line Options
	2.6.3 Filename, Directory and Wildcard Pattern Matching
	2.6.4 Using Wildcard Characters on Unix
	2.6.5 Source directory substitution using @

	2.7 Quick-Start Encoding Examples
	2.7.1 Encoding Single Files
	2.7.2 Encoding Directories
	2.7.3 Encoding Files with non-default File Extensions
	2.7.4 Encoding PHP Shell Scripts
	2.7.5 Encrypting Templates and other Files
	2.7.6 Leaving Files non-encoded
	2.7.7 Omitting Files from the Encoding Target
	2.7.8 Adding Copyright and License Details to Encoded Files

	3 ENCODER COMMAND LINE OPTIONS
	3.1 Specifying the Source and Target
	3.1.1 Source Items
	3.1.2 The Encoder Target [-o, --into]

	3.2 Encoded File Format
	3.2.1 ASCII Format [--ascii]
	3.2.2 Binary Format [--binary]

	3.3 Encoding to an Existing Directory Target
	3.3.1 Replacing the Target [--replace-target]
	3.3.2 Merging into the Target [--merge-target]
	3.3.3 Renaming the Target [--rename-target]
	3.3.4 Updating the Target [--update-target]
	3.3.5 Create Target Path [--create-target]
	3.3.6 Target Options and Bundled Encodings

	3.4 Selecting Files to be Encoded, Encrypted, Copied or Ignored
	3.4.1 Encoding Specific PHP Files [--encode]
	3.4.2 Encrypting Files [--encrypt]
	3.4.3 Copy Files without Encoding or Encrypting [--copy]
	3.4.4 Skipping Items in a Project [--skip]
	3.4.5 Excluding Files from the Target [--ignore]
	3.4.6 Including Ignored Files [--keep]
	3.4.7 Including only Encoded Files into the Target [--only-include-encoded-files]

	3.5 Bytecode Obfuscation
	3.5.1 Obfuscating Compiled Bytecode Symbols [--obfuscate]
	3.5.2 Specifying an Obfuscation Key [--obfuscation-key]
	3.5.3 Specifying Obfuscation Exclusions [--obfuscation-exclusion-file]

	3.6 File Based Server Restrictions (Pro and Cerberus Editions)
	3.6.1 Expiring Files after a Period [--expire-in]
	3.6.2 Expiring Files from a Date [--expire-on]
	3.6.3 Locking Files to Specific Domains and Servers [--allowed-server]
	3.6.4 Using domain restricted scripts with PHP CLI [--trust-unnamed-servers]
	3.6.5 Exclude checking of interface aliases [--ignore-interface-aliases]

	3.7 License Based Server Restrictions (Pro and Cerberus Editions)
	3.7.1 Specifying a License File [--with-license]
	3.7.2 Specifying a Passphrase [--passphrase]
	3.7.3 License Check Mode [--license-check]

	3.8 Target File Attributes
	3.8.1 Copying with Hard Links [--use-hard-links]
	3.8.2 Using Default File Permissions [--without-keeping-file-perms]
	3.8.3 Updating File Times [--without-keeping-file-times]
	3.8.4 File Ownership [--without-keeping-file-owner]
	3.8.5 Setting File Ownership [--apply-file-user, --apply-file-group]

	3.9 Language Options
	3.9.1 Ignoring Short Open Tags [--no-short-open-tags]
	3.9.2 Ignoring Strict Language Warnings [--ignore-strict-warnings]
	3.9.3 Ignoring Deprecated Feature Warnings [--ignore-deprecated-warnings]
	3.9.4 Register Custom Auto Globals [--register-autoglobal]

	3.10 Encoded File Header Customisation
	3.10.1 Generating Files with no PHP Header [--without-loader-check]
	3.10.2 Customising the ‘no Loader installed’ Message [--message-if-no-loader]
	3.10.3 Customising the ‘no Loader installed’ Action [--action-if-no-loader]
	3.10.4 Setting the Run-Time Loader Path [--loader-path]
	3.10.5 Setting the Header Code [--preamble-file]
	3.10.6 Header Comments [--add-comment, --add-comments]

	3.11 Customising Loader Behaviour
	3.11.1 Loader Event Messages [--loader-event]
	3.11.2 Callback Files [--callback-file]
	3.11.3 Loader Event Constants

	3.12 File Properties and Include Attack Prevention
	3.12.1 Setting Properties [--property, --properties]
	3.12.2 Include Attack Prevention [--include-if-property]
	3.12.3 Preventing Prepend and Append File Usage [--disable-auto-prepend-append]

	3.13 Project Handling
	3.13.1 Specifying the Project File [--project-file]
	3.13.2 Creating the Project File [--create-project]
	3.13.3 Update a Project File [--update-project]

	3.14 Bundled Encodings
	3.14.1 Starting a Bundled Encoding [--bundle, -B]
	3.14.2 Adding to a Bundled Encoding [--add-to-bundle, -A]
	3.14.3 Bundled encoding and the --*-target options
	3.14.4 Adding header comments with extra encodings [--keep-comments]
	3.14.5 Bundled Encodings and Encryption of Non-PHP Files
	3.14.6 Limits on Bundled Encoding Files
	3.14.7 Bundled Encodings and Encoded File Format

	3.15 Miscellany
	3.15.1 Encoding and Bytecode Optimisation [--optimise, --optimize]
	3.15.2 Allowing Encoding into the Source Tree [--allow-encoding-into-source]
	3.15.3 Omitting Documentation Comments [--no-doc-comments]
	3.15.4 Setting an alternate Shell Script Line [--shell-script-line]
	3.15.5 Enforce Minimum Loader Version [--min-loader-version]
	3.15.6 Check for Program Updates [--check-version]
	3.15.7 Program Version [-V, --version]
	3.15.8 Verbose Mode [-v, --verbose]
	3.15.9 File Verify [--verify] (legacy option)
	3.15.10 Help [-h, --help]

	4 EXTERNAL AND DYNAMIC KEYS
	4.1 Introduction
	4.2 External Keys
	4.2.1 File System External Keys [--encoding-key file:...]
	4.2.2 Using Configuration Properties With External Keys [--encoding-key ini:...]
	4.2.3 Where External Key ini Properties Can be Set
	4.2.4 Using License Properties With External Keys [--encoding-key lic:...]
	4.2.5 External Keys and Security
	4.2.6 Uniqueness of External Key Values
	4.2.7 Errors That May Occur When Encoding With External Keys
	4.2.8 Errors That May Occur With External Keys at Runtime

	4.3 Dynamic Keys
	4.3.1 Function Annotations to Specify Dynamic Keys
	4.3.2 Rules for Expressions Used to Get the Decoding Key
	4.3.3 Available Encryption Methods
	4.3.4 Dynamic Keys for Whole Scripts
	4.3.5 Dynamic Keys for Primary Scripts
	4.3.6 Dynamic Keys and Closures
	4.3.7 Chains of Functions Having Dynamic Keys
	4.3.8 Performance Versus Security When Using Dynamic Keys
	4.3.9 Using the Reflection API with Dynamic Decoding [--allow-reflection-all, --allow-reflection]
	4.3.10 Errors & Warnings Related to Dynamic Keys Produced by the Encoder
	4.3.11 Errors Related to Dynamic Keys That May Occur At Runtime
	4.3.12 Controlling How Dynamic Decoding Errors Are Presented [--dynamic-key-errors]
	4.3.13 Getting Dynamic Key Information With Verbose [--verbose]

	5 LICENSE FILE GENERATION (Pro and Cerberus Editions)
	5.1 Introduction to License Files
	5.2 Creating License Files
	5.2.1 Command Line Usage
	5.2.2 Help [--help, -h]
	5.2.3 Program version [--version, -v]
	5.2.4 Output path [--output, -o]
	5.2.5 Using Passphrases to Differentiate Products [--passphrase]
	5.2.6 Setting License Restrictions [--allowed-server, --expose-server-restrictions]
	5.2.7 Exclude checking of interface aliases [--ignore-interface-aliases]
	5.2.8 Setting License Restrictions from Server Data [--use-server-file]
	5.2.9 Selecting Adapters [--select-server-adapter, --select-adapters]
	5.2.10 License Expiry [--expire-in, --expire-on, --expose-expiry]
	5.2.11 License Properties [--property, --properties, --expose-property]
	5.2.12 License Property Checking [--enforce-property]
	5.2.13 Customising the Header Block [--header-line]
	5.2.14 Viewing Server Data Files [--decode-server-file]
	5.2.15 Decoding a license [--decode-license, --decode-format]
	5.2.16 Legacy compatibility [--compat]
	5.2.17 Troubleshooting License Problems

	6 LOADER API
	6.1 File Information and Execution
	6.1.1 Checking for an Encoded File [ioncube_file_is_encoded()]
	6.1.2 General Encoded File Information [ioncube_file_info()]
	6.1.3 Retrieving Properties Stored in an Encoded File [ioncube_file_properties()]
	6.1.4 Retrieving the Loader String Version [ioncube_loader_version()]
	6.1.5 Retrieving the Loader Integer Version [ioncube_loader_iversion()]

	6.2 License and Server Information
	6.2.1 Retrieving Properties Stored in a License [ioncube_license_properties()]
	6.2.2 Retrieving the List of Permissioned Servers [ioncube_licensed_servers()]
	6.2.3 Creating a Server Data Block [ioncube_server_data()]

	6.3 License Validation
	6.3.1 Validating License Properties [ioncube_check_license_properties()]
	6.3.2 Validating Licensed Servers [ioncube_license_matches_server()]
	6.3.3 Validating License Expiry [ioncube_license_has_expired()]

	6.4 Encrypted File Support
	6.4.1 Reading Encrypted Files [ioncube_read_file()]
	6.4.2 Writing Encrypted Files [ioncube_write_file()]

	6.5 Error codes

	7 ERROR REPORTING
	8 TROUBLESHOOTING
	8.1 Unable to Start the Encoder
	8.1.1 On Unix (Linux, FreeBSD, MacOS)
	8.1.2 Using a 64 bit system
	8.1.3 On Windows

	9 LOADER INSTALLATION
	9.1 Loader Naming
	9.2 Installation in a php.ini File

